2048.vn

Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 50)
Quiz

Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 50)

VietJack
VietJack
ToánLớp 1211 lượt thi
48 câu hỏi
1. Trắc nghiệm
1 điểm

Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

\(\frac{8}{{89}}.\)

\(\frac{{81}}{{89}}.\)

\(\frac{{36}}{{89}}.\)

\(\frac{{53}}{{89}}.\)

Xem đáp án
2. Tự luận
1 điểm

Gọi S là tập hợp các số tự nhiên có hai chữ số. Trong các số: 7; 15; 106; 99, số nào thuộc và số nào không thuộc tập S? Dùng kí hiệu để trả lời.

Xem đáp án
3. Trắc nghiệm
1 điểm

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\)

0.

3.

1.

2.

Xem đáp án
4. Tự luận
1 điểm

Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)

Xem đáp án
5. Tự luận
1 điểm

Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y(−1).

Xem đáp án
6. Trắc nghiệm
1 điểm

Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ. Tìm mệnh đề đúng.

Cho hàm số y = ax^3 + bx^2 + cx + d có đồ thị như hình vẽ. Tìm mệnh đề đúng (ảnh 1)

a < 0, b > 0, c > 0, d < 0.

a < 0, b < 0, c > 0, d < 0.

a > 0, b > 0, c > 0, d < 0.

a < 0, b > 0, c < 0, d < 0.

Xem đáp án
7. Trắc nghiệm
1 điểm

Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là

z = 0.

x + y + z = 0.

y = 0.

x = 0.

Xem đáp án
8. Tự luận
1 điểm

Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng:

\({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z = - 1 + 2t}\end{array}} \right.;\,\,{d_2}:\frac{x}{1} = \frac{{y - 2}}{{ - 3}} = \frac{z}{{ - 3}};\,\,{d_3}:\frac{{x + 1}}{5} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}.\)

Viết phương trình đường thẳng \(\Delta \), biết \(\Delta \) cắt ba đường thẳng d1, d2, d3 lần lượt tại các điểm A, B, C sao cho AB = BC.

Xem đáp án
9. Tự luận
1 điểm

Tính tổng \(S = C_n^0 + 3C_n^1 + {3^2}C_n^2 + ... + {3^n}C_n^n.\)

Xem đáp án
10. Tự luận
1 điểm

Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).

a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO BC tại H.

b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.

Xem đáp án
11. Tự luận
1 điểm

Cho hình phẳng giới hạn bởi các đường y = xlnx, y = 0, x = e quay xung quanh trục Ox tạo thành khối tròn xoay có thể tích bằng \(\frac{\pi }{a}\left( {b{e^3} - 2} \right).\) Tìm a và b.

Xem đáp án
12. Tự luận
1 điểm

Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.

a) Tính \(\widehat {COD}.\)

b) Tứ giác OIMK là hình gì?

c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.

d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Xem đáp án
13. Tự luận
1 điểm

Cho hình chóp tam giác S.ABC. Gọi M là trung điểm của SB, N thuộc cạnh SC sao cho NS = 2NC, P thuộc cạnh SA sao cho PA = 2PS. Gọi V1, V2 lần lượt là thể tích của các khối tứ diện BMNP và SABC. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)

Xem đáp án
14. Tự luận
1 điểm

Cho hình chóp tam giác S.ABC. Gọi M là trung điểm của SB, N thuộc cạnh SC sao cho NS = 2NC. Kí hiệu V1, V2 lần lượt là thể tích của các khối chóp A.BMNC và S.AMN. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)

Xem đáp án
15. Tự luận
1 điểm

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên hợp với đáy một góc \(60^\circ .\) Tính thể tích khối chóp S.ABC.

Xem đáp án
16. Tự luận
1 điểm

Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].

Xem đáp án
17. Tự luận
1 điểm

Tìm số giá trị nguyên của tham số m [0; 30] để phương trình 6x + 2mx = m2x + 2x.3x có đúng 3 nghiệm nguyên dương.

Xem đáp án
18. Tự luận
1 điểm

Tìm tập xác định của hàm số \(y = \frac{{2x - 1}}{{\sqrt x - 2}}.\)

Xem đáp án
19. Tự luận
1 điểm

Tìm tập xác định của hàm số \(y = \sqrt {\frac{{{x^2} + x + 1}}{{\left| {2x - 1} \right| - x - 2}}} .\)

Xem đáp án
20. Tự luận
1 điểm

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.

Xem đáp án
21. Tự luận
1 điểm

Cho biểu thức \(P = \frac{{\sqrt x + 1}}{{\sqrt x - 2}}.\) Tìm các giá trị nguyên của x để P < 0.

Xem đáp án
22. Tự luận
1 điểm

Tìm tọa độ giao điểm của đồ thị hai hàm số y = -x2 và y = x – 2.

Xem đáp án
23. Tự luận
1 điểm

Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)

Xem đáp án
24. Tự luận
1 điểm

Tính tổng các nghiệm của phương trình \(\log _2^2x - {\log _2}9.{\log _3}x = 3.\)

Xem đáp án
25. Tự luận
1 điểm

Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:

a) Một cách tuỳ ý?

b) Theo từng môn và sách Toán nằm ở giữa?

Xem đáp án
26. Tự luận
1 điểm

Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn?

Xem đáp án
27. Tự luận
1 điểm

Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a, mặt bên (SAD) là tam giác đều. Lấy điểm M trên cạnh AB sao cho MB = 2AM. Mặt phẳng (α) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và tính diện tích của thiết diện đó.

Xem đáp án
28. Tự luận
1 điểm

Tính đạo hàm của hàm số sin2x.

Xem đáp án
29. Trắc nghiệm
1 điểm

Cho a, b, c là ba số thực dương và khác 1. Đồ thị các hàm số y = ax, y = logbx, y = logcx được cho trong hình dưới đây:

Cho a, b, c là ba số thực dương và khác 1. Đồ thị các hàm số y = a^x, y = log b x (ảnh 1)

Mệnh đề nào dưới đây đúng?

a < b < c.

c < b < a.

b < c < a.

b < a < c.

Xem đáp án
30. Tự luận
1 điểm

Tìm các giá trị nguyên của m để phương trình \({\cos ^2}x + \sqrt {\cos x + m} = m\) có nghiệm.

Xem đáp án
31. Tự luận
1 điểm

Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).

Xem đáp án
32. Tự luận
1 điểm

Với a là số thực dương tùy ý, tìm giá trị của log3(3a).

Xem đáp án
33. Tự luận
1 điểm

Một đĩa gốm cổ cần được phục hồi. Hãy xác định tâm và bán kính của đĩa. Lấy 2 điểm A, B thuộc đường tròn lớn và 2 điểm C, D thuộc đường tròn nhỏ. Xác định giao điểm 2 đường trung trực của AB và CD.

Một đĩa gốm cổ cần được phục hồi. Hãy xác định tâm và bán kính của đĩa. Lấy 2 điểm A (ảnh 1)

Xem đáp án
34. Tự luận
1 điểm

Phân tích đa thức sau thành nhân tử: x2 – 6x + 2(x – 6).

Xem đáp án
35. Tự luận
1 điểm

Cho hình hộp ABCD.A′B′C′D′, và một điểm M nằm giữa hai điểm A và B. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB’D’). Cắt hình hộp bởi mặt phẳng (P) thì thiết diện là hình gì?

Xem đáp án
36. Tự luận
1 điểm

Cho ∆ABC có các tia phân giác của góc B và góc A cắt nhau tại điểm O. Qua O kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N. Cho BM = 2cm, CN = 3cm. Tính MN.

Xem đáp án
37. Tự luận
1 điểm

Một người đem gửi tiền tiết kiệm vào một ngân hàng với lãi suất 1% một tháng. Biết rằng cứ sau mỗi quý (3 tháng) thì lãi sẽ được cộng dồn vào vốn gốc. Hỏi sau tối thiểu bao nhiêu năm thì người đó nhận lại được số tiền bao gồm cả vốn lẫn lãi gấp ba lần số tiền ban đầu?

Xem đáp án
38. Tự luận
1 điểm

Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?

Xem đáp án
39. Tự luận
1 điểm

Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?

Xem đáp án
40. Tự luận
1 điểm

Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?

Xem đáp án
41. Tự luận
1 điểm

Tìm tập nghiệm của phương trình \(\log \left( {{x^2} - x - 6} \right) + x = \log \left( {x + 2} \right) + 4.\)

Xem đáp án
42. Tự luận
1 điểm

Trong không gian Oxyz, cho mặt phẳng (P): x + 2y + 2z + 4 = 0 và mặt cầu (S): x2 + y2 + z2 − 2x − 2y − 2z – 1 = 0. Tìm tọa độ của điểm M trên (S) sao cho d(M, (P)) đạt GTNN.

Xem đáp án
43. Tự luận
1 điểm

Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z + 6 = 0 và các điểm A(-1; 2; 3), B(3; 0; -1), C(1; 4; 7). Tìm điều kiện của điểm M thuộc (P) sao cho MA2 + MB2 + MC2 nhỏ nhất.

Xem đáp án
44. Tự luận
1 điểm

Một hộp đựng 7 quả cầu trắng và 3 quả cầu đỏ. Lấy ngẫu nhiên từ hộp ra 4 quả cầu. Tính xác suất để trong 4 quả cầu được lấy có đúng 2 quả cầu đỏ.

Xem đáp án
45. Tự luận
1 điểm

Tìm tất cả các giá trị của tham số m để hàm số y = x3 − mx2 + (2m − 3)x − 3 đạt cực đại tại điểm x = 1.

Xem đáp án
46. Tự luận
1 điểm

Tìm tất cả các giá trị của tham số m để phương trình 4x – 3.2x + 1 + m = 0 có hai nghiệm thực x1; x2 thỏa mãn x1 + x2 < 2.

Xem đáp án
47. Tự luận
1 điểm

Cho hàm số \(y = \frac{{2x + 1}}{{2x - 1}}\) có đồ thị (C) và đường thẳng d: y = x + 2. Tìm tọa độ giao điểm của đồ thị (C) và đường thẳng d.

Xem đáp án
48. Tự luận
1 điểm

Hàm số \(y = \frac{1}{x}\) nghịch biến trên khoảng nào?

Xem đáp án
© All rights reserved VietJack