Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 50)
48 câu hỏi
Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.
\(\frac{8}{{89}}.\)
\(\frac{{81}}{{89}}.\)
\(\frac{{36}}{{89}}.\)
\(\frac{{53}}{{89}}.\)
Gọi S là tập hợp các số tự nhiên có hai chữ số. Trong các số: 7; 15; 106; 99, số nào thuộc và số nào không thuộc tập S? Dùng kí hiệu để trả lời.
Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là
0.
3.
1.
2.
Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y(−1).
Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ. Tìm mệnh đề đúng.

a < 0, b > 0, c > 0, d < 0.
a < 0, b < 0, c > 0, d < 0.
a > 0, b > 0, c > 0, d < 0.
a < 0, b > 0, c < 0, d < 0.
Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là
z = 0.
x + y + z = 0.
y = 0.
x = 0.
Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng:
\({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z = - 1 + 2t}\end{array}} \right.;\,\,{d_2}:\frac{x}{1} = \frac{{y - 2}}{{ - 3}} = \frac{z}{{ - 3}};\,\,{d_3}:\frac{{x + 1}}{5} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}.\)
Viết phương trình đường thẳng \(\Delta \), biết \(\Delta \) cắt ba đường thẳng d1, d2, d3 lần lượt tại các điểm A, B, C sao cho AB = BC.
Tính tổng \(S = C_n^0 + 3C_n^1 + {3^2}C_n^2 + ... + {3^n}C_n^n.\)
Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).
a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO ⊥ BC tại H.
b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.
Cho hình phẳng giới hạn bởi các đường y = xlnx, y = 0, x = e quay xung quanh trục Ox tạo thành khối tròn xoay có thể tích bằng \(\frac{\pi }{a}\left( {b{e^3} - 2} \right).\) Tìm a và b.
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Cho hình chóp tam giác S.ABC. Gọi M là trung điểm của SB, N thuộc cạnh SC sao cho NS = 2NC, P thuộc cạnh SA sao cho PA = 2PS. Gọi V1, V2 lần lượt là thể tích của các khối tứ diện BMNP và SABC. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Cho hình chóp tam giác S.ABC. Gọi M là trung điểm của SB, N thuộc cạnh SC sao cho NS = 2NC. Kí hiệu V1, V2 lần lượt là thể tích của các khối chóp A.BMNC và S.AMN. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên hợp với đáy một góc \(60^\circ .\) Tính thể tích khối chóp S.ABC.
Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].
Tìm số giá trị nguyên của tham số m ∈ [0; 30] để phương trình 6x + 2mx = m2x + 2x.3x có đúng 3 nghiệm nguyên dương.
Tìm tập xác định của hàm số \(y = \frac{{2x - 1}}{{\sqrt x - 2}}.\)
Tìm tập xác định của hàm số \(y = \sqrt {\frac{{{x^2} + x + 1}}{{\left| {2x - 1} \right| - x - 2}}} .\)
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.
Cho biểu thức \(P = \frac{{\sqrt x + 1}}{{\sqrt x - 2}}.\) Tìm các giá trị nguyên của x để P < 0.
Tìm tọa độ giao điểm của đồ thị hai hàm số y = -x2 và y = x – 2.
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)
Tính tổng các nghiệm của phương trình \(\log _2^2x - {\log _2}9.{\log _3}x = 3.\)
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn?
Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a, mặt bên (SAD) là tam giác đều. Lấy điểm M trên cạnh AB sao cho MB = 2AM. Mặt phẳng (α) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và tính diện tích của thiết diện đó.
Tính đạo hàm của hàm số sin2x.
Cho a, b, c là ba số thực dương và khác 1. Đồ thị các hàm số y = ax, y = logbx, y = logcx được cho trong hình dưới đây:

Mệnh đề nào dưới đây đúng?
a < b < c.
c < b < a.
b < c < a.
b < a < c.
Tìm các giá trị nguyên của m để phương trình \({\cos ^2}x + \sqrt {\cos x + m} = m\) có nghiệm.
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Với a là số thực dương tùy ý, tìm giá trị của log3(3a).
Một đĩa gốm cổ cần được phục hồi. Hãy xác định tâm và bán kính của đĩa. Lấy 2 điểm A, B thuộc đường tròn lớn và 2 điểm C, D thuộc đường tròn nhỏ. Xác định giao điểm 2 đường trung trực của AB và CD.

Phân tích đa thức sau thành nhân tử: x2 – 6x + 2(x – 6).
Cho hình hộp ABCD.A′B′C′D′, và một điểm M nằm giữa hai điểm A và B. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB’D’). Cắt hình hộp bởi mặt phẳng (P) thì thiết diện là hình gì?
Cho ∆ABC có các tia phân giác của góc B và góc A cắt nhau tại điểm O. Qua O kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N. Cho BM = 2cm, CN = 3cm. Tính MN.
Một người đem gửi tiền tiết kiệm vào một ngân hàng với lãi suất 1% một tháng. Biết rằng cứ sau mỗi quý (3 tháng) thì lãi sẽ được cộng dồn vào vốn gốc. Hỏi sau tối thiểu bao nhiêu năm thì người đó nhận lại được số tiền bao gồm cả vốn lẫn lãi gấp ba lần số tiền ban đầu?
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?
Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
Tìm tập nghiệm của phương trình \(\log \left( {{x^2} - x - 6} \right) + x = \log \left( {x + 2} \right) + 4.\)
Trong không gian Oxyz, cho mặt phẳng (P): x + 2y + 2z + 4 = 0 và mặt cầu (S): x2 + y2 + z2 − 2x − 2y − 2z – 1 = 0. Tìm tọa độ của điểm M trên (S) sao cho d(M, (P)) đạt GTNN.
Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z + 6 = 0 và các điểm A(-1; 2; 3), B(3; 0; -1), C(1; 4; 7). Tìm điều kiện của điểm M thuộc (P) sao cho MA2 + MB2 + MC2 nhỏ nhất.
Một hộp đựng 7 quả cầu trắng và 3 quả cầu đỏ. Lấy ngẫu nhiên từ hộp ra 4 quả cầu. Tính xác suất để trong 4 quả cầu được lấy có đúng 2 quả cầu đỏ.
Tìm tất cả các giá trị của tham số m để hàm số y = x3 − mx2 + (2m − 3)x − 3 đạt cực đại tại điểm x = 1.
Tìm tất cả các giá trị của tham số m để phương trình 4x – 3.2x + 1 + m = 0 có hai nghiệm thực x1; x2 thỏa mãn x1 + x2 < 2.
Cho hàm số \(y = \frac{{2x + 1}}{{2x - 1}}\) có đồ thị (C) và đường thẳng d: y = x + 2. Tìm tọa độ giao điểm của đồ thị (C) và đường thẳng d.
Hàm số \(y = \frac{1}{x}\) nghịch biến trên khoảng nào?








