7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 62)
92 câu hỏi
Tính giá trị lớn nhất của hàm số y = x(2 − lnx)trên đoạn [2;3].
Tìm giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [1; 2].
Hàm số y = cos 2x đồng biến trên khoảng nào?
Hàm số y = cos 2x nghịch biến trên khoảng nào sau đây (k Î ℤ).
Tính tích các nghiệm của phương trình .
Giải phương trình: log8 (x − 1)3 + log2 (x + 2) = 2 log4 (3x − 2).
Trong hệ trục tọa độ , tọa độ của vec tơ là bao nhiêu?
Trong mặt phẳng tọa độ Oxy có hai vectơ đơn vị trên hai trục là . Cho , nếu thì (a; b) có thể là cặp số nào sau đây?
(2; 3);
(3; 2);
(−3; 2);
(0; 2).
Xét các số phức z thỏa mãn là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng:
Xét các số phức z thỏa mãn là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là:
Hàm số y = x3 − 3(m + 1)x2 + 3(m − 1)2x. Hàm số đạt cực trị tại điểm có hoành độ x = 1 khi
m = 4;
m = 0, m = 1;
m = 1;
m = 0, m = 4.
Tìm tất cả các giá trị của m để hàm số đạt cực trị tại x = −1.
Cho hình lập phương (ABCD.A'B'C'D') (tham khảo hình vẽ bên). Góc giữa hai đường thẳng (AC) và (A'D) bằng:

Cho hình lập phương ABCD.A'B'C'D'. Tính góc giữa các cặp đường thẳng sau đây:
a) AB và B'C'
b) AC và B'C'
c) A'C' và B'C
Cho . Gọi (X; Y) là tọa độ của . Tính tích XY.
Trong không gian Oxyz, tọa độ của véctơ là bao nhiêu?
Gọi A, B lần lượt là điểm cực đại và điểm cực tiểu của đồ thị hàm số y = x3 − 3x2 + 2. Trung điểm I của đoạn thẳng AB có tọa độ nào dưới đây?
(1; 1);
(2; 0);
(1; 0);
(1; −2).
Gọi A, B lần lượt là điểm cực đại và cực tiểu của đồ thị hàm số y = x3 − 3x. Tính độ dài đoạn thẳng AB?
Cho khối chóp đều S.ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45°. Tính thể tích của khối chóp S.ABC theo a.
Hình chóp tam giác đều S.ABC có cạnh đáy là a và cạnh bên tạo với đáy một góc 45°. Tính theo a thể tích khối chóp S.ABC.
Hàm số y = ln |1 − sin x| có tập xác định là:
Tính đạo hàm của hàm số y = ln |sin x|.
Cho ba điểm A(−1; 1), B(1; 3), C(−2; 0)
a) Chứng minh A, B, C thẳng hàng
b) Tìm các tỉ số mà A chia đoạn BC, B chia đoạn AC và C chia đoạn AB
Xét các số phức z thỏa mãn . Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức là một đường tròn có bán kính bằng bao nhiêu?
Xét các số phức z thỏa mãn . Trên mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn của các số phức là một đường tròn bán kính bằng bao nhiêu?
Cho khối tròn xoay có thể tích bằng pa3, chiều cao h = 2a. Tìm bán kính đáy r của khối trụ đó.
Cho khối trụ tròn xoay có diện tích toàn phần gấp 2 lần diện tích xung quanh và có bán kính đáy bằng 6 cm. Tính thể tích khối trụ đó.
Cho khối lăng trụ ABC.A'B'C' có thể tích bằng a. Gọi M là trung điểm của AB. Nếu tam giác MB'C' có diện tích bằng b thì khoảng cách từ C đến mặt phẳng (MB'C') bằng bao nhiêu?
Cho khối lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi điểm M là trung điểm của AA' và điểm N thuộc cạnh BB' sao cho . Đường thẳng C'M cắt đường thẳng CA tại D, đường thẳng C'N cắt đường thẳng CB tại E. Tính tỉ số thể tích khối đa diện lồi AMDBNE và khối lăng trụ ABC.A'B'C'.
Cho hình thang ABCD có AB song song với CD. Cho AB = 2a và CD = a. Gọi O là trung điểm của AD. Khi đó:
Trong không gian, cho hình thang cân ABCD có AB // CD, AB = a, CD = 2a, AD = a. Gọi M, N lần lượt là trung điểm của AB. CD. Gọi K là khối tròn xoay được tạo ra khi quay hình thành ABCD quanh trục MN. Tính diện tích toàn phần Sep của khối K.
Cho tam giác ABC vuông cân tại A, BC = a. Quay hình tròn ngoại tiếp tam giác vuông ABC xung qunah cạnh BC ta được một khối tròn xoay có thể tích bằng:
Cho tam giác ABC cân tại A, góc và AB = 4 cm. Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC.
Cho hình chóp S.ABCD. Gọi M là trung điểm SB, N thuộc SC sao cho SN = 2NC. Tìm giao điểm của SA và mp (DMN).
Cho hình chóp S.ABCD, gọi M là trung điểm SB và N là điểm thuộc cạnh SC sao cho SN = 2NC. Tính tỉ số .
Cho hai hàm số f (x) = ax3 + bx2 + cx − 2 và g (x) = dx2 + ex + 2 (a, b, c, d, e Î ℝ). Biết rằng đồ thị của hàm số y = f (x) và y = g (x) cắt nhau tại ba điểm có hoành độ lần lượt là −2; −1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Cho hai hàm số và g (x) = dx2 + ex + 1 (a, b, c, d, e Î ℝ). Biết rằng đồ thị hàm số y = f (x) và y = g (x) cắt nhau tại ba điểm có hoành độ lần lượt là −3; −1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
a)
b)
c)
d)
Cho ∆ABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
a)
b)
c)
d)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD (tham khảo hình vẽ bên). Tính bán kính R của khối cầu ngoại tiếp hình chóp S.CMN.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Cho hình nón có bán kính đáy bằng 5. Biết rằng khi cắt hình nón cho bởi mặt phẳng qua trục, thiết diện thu được là một tam giác đều. Diện tích toàn phần của hình nón đã cho bằng:
Cho hình nón có bán kính bằng 5 và góc ở đỉnh bằng 60°. Diện tích xung quanh của hình nón đã cho bằng:
Cho hình nón đỉnh S, đáy là hình tròn tâm O, thiết diện qua trục là tam giác đều cạnh a. Tính thể tích của khối nón.
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng qua đỉnh của hình nón và cắt hình nón theo thiết diện là tam giác vuông có diện tích bằng 4. Góc giữa đường cao của hình nón và mặt phẳng thiết diện bằng 30°. Tính thể tích của khối nón được giới hạn bởi hình nón đã cho.
Cho hình thang ABCD có hai đáy là AB và CD với AB = 2CD. Từ C vẽ . Khẳng định nào sau đây là đúng nhất?
Cả A, B đều đúng;
Cả A, B đều sai.
Cho hình thang ABCD có hai đáy AB và CD với AB = 2CD. Từ C vẽ .
a) Chứng minh I là trung điểm AB và ;
b) Chứng minh .
Cho tứ giác ABCD. Các điểm M, N theo thứ tự thay đổi trên các cạnh AD, BC sao cho . Lấy I là trung điểm cạnh MN. Các điểm E, F lần lượt là trung điểm của AC và BD. Chứng minh I luôn chuyển động trên đoạn EF.
Cho tứ diện ABCD. Trên cạnh AD, BC theo thứ tự lấy các điểm M, N sao cho . Gọi (P) là mặt phẳng chứa đường thẳng MN và song song với CD. Khi đó thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) là
Một hình bình hành;
Một hình thang với đáy lớn gấp 2 lần đáy nhỏ;
Một hình thang với đáy lớn gấp 3 lần đáy nhỏ;
Một tam giác.
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC
a) Chứng minh:
b) Xác định điểm O sao cho .
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của DA, BC. Tính góc giữa hai đường thẳng AB và CD biết .
Cho hình chóp tam giác đều S.ABC có đáy bằng 3a, góc giữa cạnh bên và mặt đáy bằng 45°. Thể tích khối cầu ngoại tiếp hình chóp S.ABC bằng:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, góc giữa cạnh bên và mặt đáy bằng 60°. Tính thể tích V của khối chóp.
Lãi suất gửi tiết kiệm của ngân hàng A thời gian vừa qua thay đổi liên tục. Bạn Duy gửi số tiền ban đầu là 10 triệu đồng với lãi suất 0,8% một tháng. Chưa đầy một năm, thì lãi suất tăng lên 1,2% một tháng trong nửa năm tiếp theo. Và bạn Duy tiếp tục gửi; sau nửa năm đó lãi suất giảm xuống còn 1% một tháng. Đồng thời bạn Duy quyết định gửi thêm một số tháng tròn nữa. Biết rằng khi rút tiền bạn Duy được cả vốn lẫn lãi là 12 153 337,95 triệu đồng. Tổng số tháng mà bạn Duy gửi tiết kiệm là:
Lãi suất gửi tiền tiết kiệm của các ngân hàng trong thời qua liên tục thay đổi. Bác Mạnh gửi vào một số ngân hàng số tiền 5 triệu đồng với lãi suất 0,7%/ tháng. Sau sáu tháng gửi tiền, lãi suất tăng lên 0,9%/ tháng. Đến tháng thứ 10 sau khi gửi tiền, lãi suất giảm xuống 0,6%/ tháng và giữ ổn định. Biết rằng nếu bác Mạnh không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (ta gọi đó là lãi kép). Sau một năm gửi tiền, bác Mạnh rút được số tiền là bao nhiêu? (biết trong khoảng thời gian này bác Mạnh không rút tiền ra).
Với các chữ số 2, 3, 4, 5, 6, có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số 2, 3 không đứng cạnh nhau?
Từ các chữ số 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau sao cho hai chữ số 1 và 2 luôn đứng cạnh nhau?
Cho và . Tìm x để biểu thức P = A.B có giá trị là số nguyên.
Cho và . Tìm x để biểu thức P = A.B có giá trị là số nguyên.
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V?
Cho tứ diện đều ABCD cạnh a. Gọi M, N lần lượt là trung điểm của CD và AB. Lấy IÎAC, JÎDN sao cho IJ // BM. Độ dài IJ theo a là:
Cho hình chóp S.ABCD có , ABCD nội tiếp đường tròn có bán kính r = 1. Mặt cầu ngoại tiếp S.ABCD có bán kính bao nhiêu?
Cho hình chóp S.ABCD có SA = SB = SC = SD. Đáy là hình chữ nhật tâm O với . Tính V của hình chóp S.ABCD.
Một chiếc bút chì có dạng khối lăng trụ lục giác đều có cạnh đáy 3 mm và chiều cao bằng 200 mm. Thân bút chì được làm bằng gỗ và phần lõi được làm bằng than chì. Phần lõi có dạng khối trụ có chiều cao bằng chiều dài của bút và đáy là hình tròn có bán kính 1 mm. Giả định 1 m3 gỗ có giá a (triệu đồng), 1 m3 than chì có giá 6a (triệu đồng). Khi đó giá nguyên vật liệu làm một chiếc bút chì như trên gần nhất với kết quả nào dưới đây?
84,5.a (đồng);
78,2.a (đồng);
8,45.a (đồng);
7,82.a (đồng).
Một chiếc bút chì có dạng khối lăng trụ lục giác đều có cạnh đáy 3 mm và chiều cao bằng 200 mm. Thân bút chì được làm bằng gỗ và phần lõi được làm bằng than chì. Phần lõi có dạng khối trụ có chiều cao bằng chiều dài của bút và đáy là hình tròn có bán kính 1 mm. Giả định 1 m3 gỗ có giá a (triệu đồng), 1 m3 than chì có giá 8a (triệu đồng). Khi đó giá nguyên vật liệu làm một chiếc bút chì như trên gần nhất với kết quả nào dưới đây?
9,7.a (đồng);
97,3.a (đồng);
90,7.a (đồng);
9,07.a (đồng).
Một hộp chưa 35 quả cầu gồm 20 quả màu đỏ được đánh số từ 1 đến 20 và 15 quả màu xanh được đánh số từ 1 đến 15. Lấy ngẫu nhiên từ hộp đó một quả cầu. Tính xác suất để lấy được quả màu đỏ hoặc ghi số lẻ.
Một bình đựng 35 quả cầu phân biệt, trong đó có 20 quả cầu màu xanh và 15 quả cầu màu đỏ. Chọn ngẫu nhiên 5 quả cầu. Xác suất để trong 5 quả cầu được chọn có cả quả cầu màu xanh và quả cầu màu đỏ là:
Sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Tính số cách xếp sao cho các nữ sinh luôn ngồi cạnh nhau.
Sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp sao cho các nữ sinh luôn ngồi cạnh nhau và các nam sinh luôn ngồi cạnh nhau?
Trong mặt phẳng Oxy, cho tam giác ABC có đường cao AH, trung tuyến CM và phân giác trong BD có phương trình x + y − 5 = 0, biết H(−4; 1), . Tọa độ đỉnh A là:
Trong oxy cho tam giác ABC, A(1; 2) đường trung tuyến BM: 2x + y + 1 = 0 và phân giác CD: x + y − 1 = 0. Viết phương trình cạnh BC.
Trong mặt phẳng Oxy, cho các điểm A(1; −2), B(4; 1), C(4; −5).
a) Chứng minh A, B, C là ba đỉnh của một tam giác. Tìm tọa độ trung điểm cạnh BC và tọa độ trọng tâm G của tam giác ABC.
b) Điểm I thỏa mãn . Tìm tọa độ điểm I.
c) Xét hình thang ABCD với hai đáy AB và CD thỏa mãn AB = 2CD. Tìm tọa độ đỉnh D.
Trong mặt phẳng Oxy cho A(1; 2), B(4; 1), C(5; 4). Tính .
Tập nghiệm của phương trình:
Tìm tập nghiệm S của bất phương trình .
Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến với x > 0?
Tìm giá trị thực của tham số m để đường thẳng d: y = (2m − 1)x + 3 + m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 − 3x2 + 1.
Tìm giá trị thực của tham số m để đường thẳng d: y = (3m + 1)x + 3 + m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 − 3x2 − 1.
Giải phương trình:
Cho hàm số f (x) có đạo hàm f ¢(x) = x(x + 2)2, "x Î ℝ. Số điểm cực trị của hàm số đã cho là:
Cho hàm số f (x) có đạo hàm f ¢(x) = x(x − 2)2, "x Î ℝ. Số điểm cực trị của hàm số đã cho là:
Cho tam giác vuông cân ABC có AB = AC = a. Tính các tích vô hướng .
Cho ba điểm O, A, B thẳng hàng và biết OA = a, OB = b. Tính tích vô hướng trong hai trường hợp:
a) Điểm O nằm ngoài đoạn AB;
b) Điểm O nằm trong đoạn AB.
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Cho hình chữ nhật ABCD, AB = 3, AD = 4. Hãy tính độ lớn của
a)
b)
Cho hình chữ nhật ABCD, AB = 4, AD = 3. Tính độ dài vectơ .
Cho hình chóp tứ giác đều S.ABCD có , côsin của góc hợp bởi hai mặt phẳng (SBC); và (SCD) bằng . Tính thể tích của khối chóp S.ABCD.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng:
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số có hai tiệm cận ngang.
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy ABC là tam giác vuông tại B, AB = a, SA = a. Gọi H là hình chiếu của A trên SB. Tính khoảng cách giữa AH và BC.
Cho hình chóp S.ABC có SAvuông góc với mặt phẳng (ABC). . Tam giác ABC vuông cân tại B và AB = a (minh họa như hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng:








