2048.vn

7881 câu  Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 60)
Quiz

7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 60)

VietJack
VietJack
ToánLớp 1212 lượt thi
165 câu hỏi
1. Tự luận
1 điểm

Trong mặt phẳng cho 15 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có đỉnh là 3 trong số 15 điểm đã cho là?

Xem đáp án
2. Tự luận
1 điểm

Giải phương trình: sin2x – cos2x + 3sinx – cosx – 1 = 0.

Xem đáp án
3. Tự luận
1 điểm

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem đáp án
4. Tự luận
1 điểm

Làm theo mẫu: \(\frac{{143}}{{10}} = 14;\frac{3}{{10}} = 0,3\).

Yêu cầu: \(\frac{{126}}{{100}} = ...;\frac{{26}}{{100}} = ...\)

\(\frac{{1246}}{{10}} = ...;\frac{6}{{10}} = ...\)

Xem đáp án
5. Tự luận
1 điểm

Tích các nghiệm của phương trình: logx(125x) . log252x = 1?

Xem đáp án
6. Tự luận
1 điểm

Một người mua hai loại hàng và phải trả tổng cộng 2,17 triệu đồng, kể cả thuế giá trị gia tăng (VAT) với mức 10% đối với loại hàng thứ nhất và 8% đố với loại hàng thứ hai. Nếu thuế VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 2,18 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng?

Xem đáp án
7. Tự luận
1 điểm

Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Biết OC = 2cm. Tính AC ?

Xem đáp án
8. Tự luận
1 điểm

Cho sinx + cosx = m. Tính theo m giá trị của M = sinxcosx.

Xem đáp án
9. Tự luận
1 điểm

Phân tích thành nhân tử: \(x\sqrt x - 1 + \sqrt x - x\).

Xem đáp án
10. Tự luận
1 điểm

Một người thợ mộc làm những cái bàn và những cái ghế. Mỗi cái bàn khi bán lãi 150 nghìn đồng, mỗi cái ghế khi bán lãi 50 nghìn đồng. Người thợ mộc có thể làm 40 giờ/tuần và tốn 6h làm 1 cái bàn, 3h làm 1 cái ghế. Khách hàng yêu cầu người thợ mộc làm số ghế ít nhất là gấp 3 lần số bàn. Một cái bàn chiếm chỗ bằng 3 cái ghế và ta có phòng để được nhiều nhất 4 cái bàn/tuần. Hỏi người thợ mộc phải sản xuất như nào để có tiền lãi thu về là lớn nhất.

Xem đáp án
11. Tự luận
1 điểm

Cho tam giác ABC có trọng tâm G và hai trung tuyến AM, BN. Biết AM = 15, BN = 12 và tam giác CMN có diện tích là \(15\sqrt 3 \). Tính độ dài đoạn thẳng MN.

Xem đáp án
12. Tự luận
1 điểm

Nếu x2 + 1 ≠ 0 thì x ≠ – 1, đúng hay sai?

Xem đáp án
13. Tự luận
1 điểm

Cho x + 2y = 5. Tính giá trị biểu thức A = x2 + 4y2 – 2x + 10 + 4xy – 4y.

Xem đáp án
14. Tự luận
1 điểm

Phủ định của mệnh đề “x  ℝ, x2 – x + 1 < 0” là mệnh đề nào?

Xem đáp án
15. Tự luận
1 điểm

Cho tập hợp A = {x ℝ| x – a| ≤ 2} và B = (– 2; 5]. Biết rằng tập hợp tất cả các giá trị a để A giao B khác rỗng là nửa khoảng (m; n]. Tính S = n + 2m.

Xem đáp án
16. Tự luận
1 điểm

Từ điểm A ở ngoài đường tròn (O; R), kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B và vuông góc với OA tại H cắt (O) tại C. Vẽ đường kính BD của (O).

a) Chứng minh: AC là tiếp tuyến của (O).

b) Chứng minh: DC.OA = 2R2 .

Xem đáp án
17. Tự luận
1 điểm

Nhân ngày 20/10, một cửa hàng thời trang giảm 30% giá niêm yết cho tất cả sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiết của cửa hàng thì được tặng thêm một voucher trị giá bằng 10% số tiền thanh toán tại quầy thu ngân.

a) Chị Hoa không có thẻ thân thiết của cửa hàng, chị mua một chiếc váy có giá niêm yết là 1.050.000đ. Hỏi chị Hoa phải trả bao nhiêu tiền cho chiếc váy đó?

b) Cô Hà có thẻ khách hàng thân thiết, cô mua một chiếc túi xách và nhận được một voucher trị giá 91.000đ. Hỏi giá niêm yết ban đầu của túi xách là bao nhiêu?

Xem đáp án
18. Tự luận
1 điểm

Tính giá trị biểu thức: – 87 + (–12) – (–487) + 512

Xem đáp án
19. Tự luận
1 điểm

Tìm đạo hàm của hàm số \(y = \frac{{x - 1}}{{\sqrt {{x^2} + 1} }}\).

Xem đáp án
20. Tự luận
1 điểm

Trong một kì kiểm tra, có 42% học sinh không đạt môn nhảy xa, 52% không đạt môn đá cầu, trong đó 17% học sinh không đạt cả 2 môn, hãy tính % số học sinh đã đạt cả hai môn đó.

Xem đáp án
21. Tự luận
1 điểm

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AB và D là điểm đối xứng của M qua I.
a. Chứng minh: AD//BM và tứ giác ADBM là hình thoi.
b. Gọi E là giao điểm AM và DC. Chứng minh: AE = EM.

Xem đáp án
22. Tự luận
1 điểm

Hình chữ “H” có bao nhiêu trục đối xứng?

Xem đáp án
23. Tự luận
1 điểm

Hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc mặt phẳng đáy, SA = \(a\sqrt 6 \). Tính góc giữa SC và (SAB).

Xem đáp án
24. Tự luận
1 điểm

Tổng các nghiệm thuộc khoảng (0;2018) của phương trình: \({\sin ^4}\frac{x}{2} + {\cos ^4}\frac{x}{2} = 1 - 2\sin x\) là?

Xem đáp án
25. Tự luận
1 điểm

Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:

P = x2 + 5y2 + 4xy + 6x + 16y + 32.

Xem đáp án
26. Tự luận
1 điểm

Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, biết AB = AC = AD = 1. Số đo góc giữa hai đường thẳng AB và CD bằng?

Xem đáp án
27. Tự luận
1 điểm

Có bao nhiêu cách sắp ngẫu nhiên 10 học sinh gồm 2 học sinh 11A, 3 học sinh lớp 11B và 5 học sinh lớp 11C thành 1 hàng ngang sao cho không có học sinh nào cùng lớp đứng cạnh?

Xem đáp án
28. Tự luận
1 điểm

Tìm số hạng thứ 7 trong khai triển (x + 2)10.

Xem đáp án
29. Tự luận
1 điểm

Trên cùng phía của đường thẳng xy, vẽ 2 đường thằng AH và BK, sao cho AH vuông góc với xy ở H, BK vuông góc với xy ở K và BK = AH. Gọi O là trung điểm của đoạn HK. Chứng minh: \(\widehat {AOH} = \widehat {BOK}\).

Xem đáp án
30. Tự luận
1 điểm

Phân tích đa thức thành nhân tử: –x2 – 2xy – y2.

Xem đáp án
31. Tự luận
1 điểm

Biết 48 lít dầu nặng 36 kg. Một can chứa dầu nặng 30 kg. Biết cân nặng của can khi rỗng là 1,5 kg, số lít dầu chứa trong can đó là?

Xem đáp án
32. Tự luận
1 điểm

Lớp 6A có 42 học sinh, lớp 6B có 54 học sinh và lớp 6C có 48 học sinh. Cô phụ trách đã xếp đều số học sinh của 3 lớp thành một số hàng như nhau. Tính số hàng nhiều nhất có thể xếp được.

Xem đáp án
33. Tự luận
1 điểm

Tìm y biết: 76,22 – y . 3 = 30,61 . 2.

Xem đáp án
34. Tự luận
1 điểm

Với x là số tự nhiên lớn hơn 3, tìm giá trị lớn nhất của P = \(\frac{{2\sqrt x + 6}}{{\sqrt x + 2}}\).

Xem đáp án
35. Tự luận
1 điểm

Tìm x biết: x(x – 4) = 0.

Xem đáp án
36. Tự luận
1 điểm

Tính giá trị biểu thức x + (–10) biết x = –28

Xem đáp án
37. Tự luận
1 điểm

Một thửa ruộng hình chữ nhật có chu vi là 96 m, chiều dài bằng \(\frac{5}{3}\) chiều rộng, người ta lấy \(\frac{1}{2}\) diện tích ăn quả. Tính diện tích ăn quả?

Xem đáp án
38. Tự luận
1 điểm

Đúng ghi Đ sai ghi S:

a) 418 cm = 41,8 m.

b) 53 cm = 0,53 m.

c)105 cm = 1,05 m.

d) 908 dm = 9,08 m.

Xem đáp án
39. Tự luận
1 điểm

Đặt tính rồi tính: 199,2 : 24.

Xem đáp án
40. Tự luận
1 điểm

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, SD, OC.

a) Tìm Tìm giao tuyến của mặt phẳng (MNP) với mp (SAC).

b) Tìm giao điểm của SA với mp (MNP).

c) Tìm thiết diện của S.ABCD với (AMN).

Xem đáp án
41. Tự luận
1 điểm

Cho đường tròn đường kính AB vẽ tiếp tuyến Ax , By từ M trên đường tròn M khác A, B vẽ tiếp tuyến thứ 3 nó cắt Ax tại C cắt By tại D gọi N là giao điểm của BC và AO.

a) Chứng minh: \(\frac{{CN}}{{AC}} = \frac{{NB}}{{BD}}\).

b) Chứng minh: MN vuông góc AB.

c) Chứng minh: \(\widehat {COD} = 90^\circ \).

Xem đáp án
42. Tự luận
1 điểm

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

Xem đáp án
43. Tự luận
1 điểm

x – y và y – x có giống nhau không? Vì sao?

Xem đáp án
44. Tự luận
1 điểm

Đặt tính rồi tính: 112,56 : 28.

Xem đáp án
45. Tự luận
1 điểm

Số dư của phép chia 37,99 : 16 nếu lấy đến 2 chữ số ở phần thập phân của thương là bao nhiêu?

Xem đáp án
46. Tự luận
1 điểm

A, B và C chạy quanh một đường tròn có chiều dài 750m với tốc độ lần lượt là 3 m/giây, 6m/giây và 18m/giây. Nếu cả ba bắt đầu từ cùng một điểm, đồng thời và chạy theo cùng một hướng, khi nào họ sẽ gặp nhau lần đầu tiên sau khi họ bắt đầu cuộc đua?

Xem đáp án
47. Tự luận
1 điểm

Cho hình vuông ABCD tâm O, cạnh bằng a. Tính \(\left| {\overrightarrow {AC} } \right|\).

Xem đáp án
48. Tự luận
1 điểm

Cho tam giác ABC có \(\widehat A = 90^\circ \), trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác góc B cắt AC ở D.

a) So sánh DA và DE.

b) Tính số đo \(\widehat {BED}\).

Xem đáp án
49. Tự luận
1 điểm

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác, vẽ các hình vuông ABDE, ACFG.

a) Chứng minh tứ giác BCGE là hình thang cân.

b) Gọi K là giao điểm của các tia DE và FG, M là trung điểm của đoạn thẳng EG. Chứng minh ba điểm K, A, M thẳng hàng.

c) Chứng minh \(\widehat {COD} = 90^\circ \)

d) Chứng minh DC, FB và AM đồng quy.

Xem đáp án
50. Tự luận
1 điểm

Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E. Gọi M, N, P, Q lần lượt là trung điểm của DE, EB, BC, CD. Chứng minh: 4 điểm M, N, P, Q cùng thuộc 1 đường tròn.

Xem đáp án
51. Tự luận
1 điểm

Cho tam giác nhọn ABC có AD là phân giác trong góc A (D thuộc BC) . Đường thẳng qua d song song với AB cắt AC tại I , đường thẳng qua d song song AC cắt AB tại K. Chứng minh rằng tam giác IDK là tam giác cân.

Xem đáp án
52. Tự luận
1 điểm

Cho tứ diện ABCD có các điểm M và N lần lượt là trung điểm của AC và BC. Lấy điểm K thuộc đoạn BD (K không là trung điểm của BD). Tìm giao điểm của đường thẳng AD và mặt phẳng (MNK).

Xem đáp án
53. Tự luận
1 điểm

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) với A, B là các tiếp điểm. Chứng minh 4 điểm A, B, O, M cùng thuộc một đường tròn.

Xem đáp án
54. Tự luận
1 điểm

Hình thoi ABCD có diện tích 20 cm2 và đường chéo AC bằng 10 cm. Tính độ dài đường chéo BD.

Xem đáp án
55. Tự luận
1 điểm

Cho điểm M nằm ngoài đường tròn (O;R). Từ M kẻ các tiếp tuyến MA, MB tới đường tròn tâm O (A, B là các tiếp điểm). Gọi H là giao điểm của MO với AB. Kẻ đường kính AD của đường tròn (O), MD cắt đường tròn (O) tại điểm thứ hai là C. Chứng minh rằng \(\widehat {MHC} = \widehat {ADC}\).

Xem đáp án
56. Tự luận
1 điểm

Một cửa hàng nhập về 50 chiếc túi xách với giá góc 150 000 đồng/cái. Cửa hàng đã bán 30 chiếc với giá mỗi chiếc lãi 30% so với giá gốc, 20 chiếc còn lại bán lỗ 5% so với giá gốc. Hỏi sau khi bán hết 50 chiếc túi xách cửa hàng đó lãi hay lỗ bao nhiêu tiền?

Xem đáp án
57. Tự luận
1 điểm

Một ô tô cứ đi 100km thì tiêu thụ hết 12,5 lít xăng. Hỏi ô tô đó đi quãng đường dài 60km thì tiêu thụ hết bao nhiêu xăng ?

Xem đáp án
58. Tự luận
1 điểm

Tính chiều cao của cây trong hình vẽ bên (Làm tròn đến chữ số thập phân thứ nhất).

Tính chiều cao của cây trong hình vẽ bên Làm tròn đến chữ số thập phân thứ nhất (ảnh 1)

Xem đáp án
59. Tự luận
1 điểm

Tìm x để y = sinx + cosx + sin2x – 1 đạt giá trị lớn nhất.

Xem đáp án
60. Tự luận
1 điểm

Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau:

y =\(\frac{{ - 1}}{2}x\) (d1) và y = \(\frac{1}{2}x\) + 3 (d2).

Xác định b để đường thẳng (d3) y = 2x + b cắt (d2) tại điểm có tung độ và hoành độ đối nhau.

Xem đáp án
61. Tự luận
1 điểm

Tìm n biết: (n – 3) + (n – 2) + (n – 1) + .... + 10 + 11 = 11.

Xem đáp án
62. Tự luận
1 điểm

Tính bằng cách thuận tiện: \(\frac{1}{{10.11}} + \frac{1}{{11.12}} + ... + \frac{1}{{49.50}}\).

Xem đáp án
63. Tự luận
1 điểm

Trong phép tính 121,23:14 và có thương là 8,65. Vậy số dư là bao nhiêu?

Xem đáp án
64. Tự luận
1 điểm

Đặt tính rồi tính: 173,44 : 32.

Xem đáp án
65. Tự luận
1 điểm

Cho tam giác ABC. M, N là trung điểm AB, AC. Chứng minh: \(\overrightarrow {AB} = \frac{{ - 2}}{3}\overrightarrow {CM} - \frac{4}{3}\overrightarrow {BN} \).

Xem đáp án
66. Tự luận
1 điểm

2 giờ và 45 phút tương đương với 2,75 giờ. Đúng hay sai?

Xem đáp án
67. Tự luận
1 điểm

Tính: 99 + (–5) + (–104) + 11.

Xem đáp án
68. Tự luận
1 điểm

Tính nhanh: [(–59) + 71] – [–83 – (–95)].

Xem đáp án
69. Tự luận
1 điểm

Cho a = –13; b = 25; c = –30. Tính giá trị biểu thức:

a) a + a + 12 – b.

b) a + b – (c + b).

c) 25 + a – (b + c) – a.

Xem đáp án
70. Tự luận
1 điểm

Tìm giá trị n ℕ thỏa mãn \(C_{n + 1}^1 + 3C_{n + 2}^2 = C_{n + 1}^3\).

Xem đáp án
71. Tự luận
1 điểm

Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung diểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE.

a) Tứ giác ADFE là hình gì? Vì sao?

b) Tứ giác EMFN là hình gì? Vì sao?

Xem đáp án
72. Tự luận
1 điểm

Cho hình thang vuông ABCD (\(\widehat A\) = \(\widehat D\)= 90°) có \[\widehat {BMC}\]= 90°, với M là trung điểm của AD. Chứng minh: AD là tiếp tuyến của đường tròn bán kính BC.

Xem đáp án
73. Tự luận
1 điểm

 Cho hình vuông có chu vi 20cm. Nếu kéo dài mỗi cạnh của hình vuông thêm 3cm thì hình vuông mới có chu vi là bao nhiêu ?

Xem đáp án
74. Tự luận
1 điểm

Cho hình vẽ sau, biết m // n và x m.

1) Chứng minh: x n.

2) Tính các góc \(\widehat {{A_1}},\widehat {{A_2}}\) biết \(\widehat {{B_1}} = 60^\circ \).

Cho hình vẽ sau, biết m // n và x vuông góc m. 1) Chứng minh: x vuông góc n (ảnh 1)

Xem đáp án
75. Tự luận
1 điểm

Cho lục giác ABCDEF. Có bao nhiêu vectơ khác \(\overrightarrow 0 \), có điểm đầu và điểm cuối là hai đỉnh của lục giác.

Xem đáp án
76. Tự luận
1 điểm

Cho một số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 2020, được viết theo thứ tự liền nhau như sau: 1 2 3 4 5 6 7 8 9 10 11 12 13 … 2017 2018 2019 2020 2021. Hãy tính tổng tất cả các chữ số của số đó?

Xem đáp án
77. Tự luận
1 điểm

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.

1) Chứng minh tứ giác BHEK là tứ giác nội tiếp.

2) Chứng minh: BH.BA = BK.BC.

3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.

Xem đáp án
78. Tự luận
1 điểm

Cho tam giác ABC có AB = a, AC = 2a. Gọi D là trung điểm AC, M là điểm thỏa mãn \[\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \]. Chứng minh: BD vuông góc AM.

Xem đáp án
79. Tự luận
1 điểm

Cho tam giác ABC vuông tại A (AB < AC) có D và E lần lượt là trung điểm của các cạnh AC và BC. Vẽ EF vuông góc với AB tại F.

a) Chứng minh rằng DE //AB và tứ giác ADEF là hình chữ nhật.

b) Trên tia đối của tia DE lấy điểm G sao cho DG = DE. Chứng minh tứ giác AECG là hình thoi.

c) Gọi O là giao điểm của AE và DF. Chứng minh rằng ba điểm B, O, G thẳng hàng.

d) Vẽ EH vuông góc với AG tại H. Chứng minh rằng tam giác DHF vuông.

Xem đáp án
80. Tự luận
1 điểm

Cho tam giác ABC vuông tại A có \(\widehat C = 30^\circ \). Gọi M và N lần lượt là trung điểm của BC và AC.

a) Tính \(\widehat {NMC}\).

b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.

c)Lấy D là điểm đối xứng với E qua BC. Tứ giác ACDB là hình gì? Tại sao?

d) Tam giác ABC có điều kiện gì thì tứ giác AECM là hình vuông?

Xem đáp án
81. Tự luận
1 điểm

Cho tam giác ABC vuông tại A, điểm M bất kì trên cạnh BC. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ M đến AB và AC. Tứ giác ADME là hình gì?

Xem đáp án
82. Tự luận
1 điểm

Cho tứ diện ABCD có AB = AC = AD = 24, BC = CD = DB = 15. Trên cạnh AB lấy điểm P sao cho PA = x.PB. Với giá trị nào của x thì mặt phẳng (a) qua P song song với AC và BD cắt tứ diện ABCD theo thiết diện là một hình thoi?

Xem đáp án
83. Tự luận
1 điểm

Cho đường tròn (O; R) đường kính AB. Điểm C thuộc đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H; kẻ OI vuông góc với AC tại I.

a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6cm.

Xem đáp án
84. Tự luận
1 điểm

Cho (d1): y = (2m + 1)x – 2m – 3 và d2: y = (m – 1)x + m. Tìm m để d1 và d2 cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án
85. Tự luận
1 điểm

Biết đồ thị hàm số y = (k – 3)x – 4 cắt đường thẳng y = –3x + 2 tại điểm có tung độ bằng 5. Tìm tham số k?

Xem đáp án
86. Tự luận
1 điểm

Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB). Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.

a) Chứng minh K là trung điểm của AB.

b) Vẽ MH  OI tại H. Chứng minh OB2 = OH.OI.

c) Gọi N là giao điểm của AB và MH. Chứng minh IA.IB = IK.IN.

Xem đáp án
87. Tự luận
1 điểm

Hình chữ nhật có chiều dài và chiều rộng cùng tăng 4 lần thì diện tích của nó tăng lên bao nhiêu lần?

Xem đáp án
88. Tự luận
1 điểm

Chứng minh không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \sin x\).

Xem đáp án
89. Tự luận
1 điểm

Lớp 11A1 có 41 học sinh trong đó có 21 bạn nam và 20 bạn nữ. Thứ hai đầu tuần lớp phải xếp hàng chào cờ thành một hàng dọc. Hỏi có bao nhiêu cách sắp xếp để 21 bạn nam xen kẽ với 20 bạn nữ?

Xem đáp án
90. Tự luận
1 điểm

Một hình bình hành ABCD có diện tích 350 cm2, biết độ dài đường cao AH = 35 cm. Tính độ dài cạnh AB.

Xem đáp án
91. Tự luận
1 điểm

Một xe khởi hành từ địa điểm A lúc 8 giờ sáng đi tới điểm B cách A 115 km, chuyển động thẳng đều với tốc độ 40 km/h. Một xe khác khởi hành từ B lúc 8 giờ 30 phút sáng đi về A, chuyển động thẳng đều với tốc độ 50 km/h. Xác định thời điểm hai xe gặp nhau.

Xem đáp án
92. Tự luận
1 điểm

Đặt tính rồi tính: 199,2 : 24.

Xem đáp án
93. Tự luận
1 điểm

Vẽ đồ thị hàm số y = (m – 1)x + 2m – 5 khi m = 1.5 Tính góc tạo bởi đường thẳng vẽ được và trục hoành ( kết quả làm tròn đến phút).

Xem đáp án
94. Tự luận
1 điểm

Tính giá trị biểu thức: (–167) . (67 – 34).

Xem đáp án
95. Tự luận
1 điểm

Bỏ ngoặc rồi tính: (123 – 27) + (27 + 13 – 123).

Xem đáp án
96. Tự luận
1 điểm

Cho 2 vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4;\left| {\overrightarrow b } \right| = 3;\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi α là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Tìm cosα?

Xem đáp án
97. Tự luận
1 điểm

Cho ΔABC vuông tại A. Kẻ BD là tia phân giác của \(\widehat {ABC}\)(D AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) Chứng minh ΔABD = ΔEBD.

b) Chứng minh: DE = AD và DE vuông góc với BC.

c) Chứng minh: BD là đường trung trực của đoạn AE.

d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.

Xem đáp án
98. Tự luận
1 điểm

Một hình thoi có diện tích là 20cm2, biết độ dài một đường chéo là 20 cm. Tính độ dài đường chéo còn lại.

Xem đáp án
99. Tự luận
1 điểm

Tìm phép dư trong phép chia đa thức f(x) = x2020 – 1 cho đa thức g(x) = x2 + x + 1.

Xem đáp án
100. Tự luận
1 điểm

Tìm x biết: (x – 12) – 15 = 20 – (17 + x).

Xem đáp án
101. Tự luận
1 điểm

Tìm x biết: 720 : [41 – (2x – 5)] = 23.5.

Xem đáp án
102. Tự luận
1 điểm

Cho tam giác ABC biết b = 7, c = 5, \(\)\[\cos \widehat A = \frac{3}{5}\]. Tính S, R, r.

Xem đáp án
103. Tự luận
1 điểm

Tìm nguyên hàm của hàm số \(\int {\frac{x}{{{{\sin }^2}x}}dx} \).

Xem đáp án
104. Tự luận
1 điểm

Cho tam giác ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác góc A?

Xem đáp án
105. Tự luận
1 điểm

Trong hệ trục tọa độ Oxy, cho đường thẳng d: y = 2x − 2 và điểm I(3; 2). Hãy tính khoảng cách:

a) Từ O đến d;

b) Từ I dến d.

Xem đáp án
106. Tự luận
1 điểm

90000m2 =… hm2.

Xem đáp án
107. Tự luận
1 điểm

Biểu đồ dưới đây nói về số học sinh tham gia tập bơi của khối lớp Bốn ở một trường tiểu học :

Biểu đồ dưới đây nói về số học sinh tham gia tập bơi của khối lớp Bốn ở một trường (ảnh 1)

Dựa vào biểu đồ dưới đây hãy viết vào chỗ chấm :

a) Lớp 4A có ……… học sinh tập bơi

b) Lớp 4B có ……… học sinh tập bơi

c) Lớp ……… có nhiều học sinh tập bơi nhất

d) Số học sinh tập bơi của lớp 4B ít hơn lớp 4A là ………học sinh

e) Trung bình mỗi lớp có ……… học sinh tập bơi.

Xem đáp án
108. Tự luận
1 điểm

\[\frac{3}{5}\]ha = …m2.

Xem đáp án
109. Tự luận
1 điểm

Phân tích các số sau ra thừa số nguyên tố và tìm xem mỗi số có bao nhiêu ước:

a) 320                   b) 625

c) 504                   d) 900          e) 3675.

Xem đáp án
110. Tự luận
1 điểm

Cho biết cosα = \(\frac{{ - 2}}{3}.\) Giá trị của P = \(\frac{{\cot \alpha + 3\tan \alpha }}{{2\cot \alpha + \tan \alpha }}\) bằng bao nhiêu?

Xem đáp án
111. Tự luận
1 điểm

Hình ngũ giác là hình gì?

Xem đáp án
112. Tự luận
1 điểm

Cho đường tròn (O; R) đường kính AB, M là một điểm bất kì trên đường tròn (M khác A và B) tiếp tuyến cắt tại m cắt hai tiếp tuyến của A và B của đường tròn đã cho tại C và D. Chứng minh rằng: tứ giác AOMC và BOMD nội tiếp; \(\widehat {AOC} = \widehat {AMC} = \widehat {OBM} = \widehat {ODM}\).

Xem đáp án
113. Tự luận
1 điểm

Tìm x biết: –x – 14 + 32 = – 26.

Xem đáp án
114. Tự luận
1 điểm

Tìm x biết: 2x(3x + 5) – x(6x – 1) = 33.

Xem đáp án
115. Tự luận
1 điểm

Tất cả các giá trị của m để bất phương trình 2|x – m| + x² + 2 > 2mx thỏa mãn với mọi x là?

Xem đáp án
116. Tự luận
1 điểm

Cho tam giác ABC cân tại A có cạnh bên bằng 6 và \(\widehat {BAC} = 120^\circ \). Điểm M thuộc cạnh AB sao cho AM = \(\frac{1}{3}AB\) và N là trung điểm AC. Tính tích vô hướng \[\overrightarrow {BN} .\overrightarrow {CM} \].

Xem đáp án
117. Tự luận
1 điểm

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.

Xem đáp án
118. Tự luận
1 điểm

Cho tam giác ABC, lấy M,N,P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ,\overrightarrow {NA} + 3\overrightarrow {NC} = \overrightarrow 0 ,\overrightarrow {PA} + \overrightarrow {PB} = \overrightarrow 0 \)

a) Tính \[\overrightarrow {PM} ,\overrightarrow {PN} \] theo \[\overrightarrow {AB} ,\overrightarrow {AC} \].

b) Chứng minh: M, N, P thẳng hàng.

Xem đáp án
119. Tự luận
1 điểm

Cho 4 điểm A, B, C, D bất kì.

a) Chứng minh: \[\overrightarrow {DA} .\overrightarrow {BC} + \overrightarrow {DB} .\overrightarrow {CA} + \overrightarrow {DC} .\overrightarrow {AB} = \overrightarrow 0 \].

b) Từ đó suy ra một cách chứng minh định lí: "Ba đường cao trong tam giác đồng qui".

Xem đáp án
120. Tự luận
1 điểm

Hình thang cân có độ dài hai cạnh đáy và chiều cao lần lượt là 40 m, 30 m và 25 m có diện tích là bao nhiêu?

Xem đáp án
121. Tự luận
1 điểm

Có bao nhiêu giá trị nguyên của m để phương trình \(\sqrt[3]{{m + 3\sqrt[3]{{m + 3\sin x}}}} = \sin x\) có nghiệm thực?

Xem đáp án
122. Tự luận
1 điểm

Một đoàn tàu dài 280m chạy qua một đường hầm dài 1200m trong 2 phút 30 giây với vận tốc đó tàu chạy quãng đường 159,84 km trong thời gian bao lâu?

Xem đáp án
123. Tự luận
1 điểm

Phân tích đa thức thành nhân tử: (3x + 2)(3x – 5)(x – 1)(9x + 10) + 24x2.

Xem đáp án
124. Tự luận
1 điểm

Tìm GTLN của S = \(\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)(a, b, c là 3 cạnh trong 1 tam giác và p là nửa chu vi).

Xem đáp án
125. Tự luận
1 điểm

Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, gọi D là trung điểm của AC lấy E đối xứng H qua D .

a) Chứng minh tứ giác AHCE là hình chữ nhật.

b) Qua A kẻ tia AI // HE cắt đường thẳng BC tại I. Chứng minh tứ giác AEHI là hình bình hành.

c) Trên tia đối của tia HA lấy K sao cho AH = HK. Chứng minh AK là tia phân giác của góc \(\widehat {IAC}\).

d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông , khi đó tứ giác AHCE là hình gì ?

Xem đáp án
126. Tự luận
1 điểm

Phép cộng, trừ 2 số cùng số mũ.

Xem đáp án
127. Tự luận
1 điểm

Tìm ba số hạng liên tiếp của một cấp số cộng, biết rằng tổng của chúng bằng 15 và tích của chúng bằng 105.

Xem đáp án
128. Tự luận
1 điểm

Tính chu vi và diện tích của mảnh đất hình chữ nhật biết chiều rộng của mảnh đất là 8,5m, chiều dài gấp đôi chiều rộng.

Xem đáp án
129. Tự luận
1 điểm

Mua ngẫu nhiên 1 tờ vé số có 6 chữ số. Tính xác suất trong các trường hợp sau:

a) Trúng giải tám (quay 1 lần, với 2 chữ số cuối cùng của tờ vé số khớp với 2 chữ số quay được.

b) Trúng giải khuyến khích cho các vé có 5 chữ số cuối cùng liên tiếp theo hàng thứ tự của giải đặc biệt.

Xem đáp án
130. Tự luận
1 điểm

Tìm x biết: (2x + 3)2 – 4x(x + 4) = 25.

Xem đáp án
131. Tự luận
1 điểm

245 phút = …giờ… phút.

Xem đáp án
132. Tự luận
1 điểm

Bỏ ngoặc rồi tính 25 − ( − 17 ) + 24 – 12.

Xem đáp án
133. Tự luận
1 điểm

Tìm nghiệm nguyên của phương trình: 3x2 – 2xy + y – 5x + 2 = 0.

Xem đáp án
134. Tự luận
1 điểm

435 phút = …giờ… phút.

Xem đáp án
135. Tự luận
1 điểm

Giải hệ phương trình: \(\left\{ \begin{array}{l}8\left( {{x^2} + {y^2}} \right) + 4xy + \frac{5}{{{{\left( {x + y} \right)}^2}}} = 13\\2y + \frac{1}{{x + y}} = 1\end{array} \right.\).

Xem đáp án
136. Tự luận
1 điểm

Phân tích đa thức thành nhân tử: 9x2 – 36xy – 36y2.

Xem đáp án
137. Tự luận
1 điểm

Biết rằng A : B = 8 : 3, A : C = 6 : 5 và A + B + C= 106. Tìm giá trị của B.

Xem đáp án
138. Tự luận
1 điểm

Biết rằng tổng của n số tự nhiên đầu tiên là 210, tìm giá trị của n.

Xem đáp án
139. Tự luận
1 điểm

Cho tam giác ABC có AB = 4, AC = 6 và \(\widehat {BAC} = 60^\circ \). Gọi M là trung điển của BC, điểm N thỏa mãn \(\overrightarrow {AN} = \frac{7}{{12}}\overrightarrow {AC} \). Chứng minh AM vuông góc BN.

Xem đáp án
140. Tự luận
1 điểm

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh rằng CH  AB.

c) Chứng minh tam giác PIQ cân.

Xem đáp án
141. Tự luận
1 điểm

Cho tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. Gọi M, N, P, Q lần lượt là trung điểm của OB, OC, AC, AB.

a) Chứng minh MNPQ là hình bình hành.

b) Xác định vị trí O để MNPQ là hình chữ nhật.

Xem đáp án
142. Tự luận
1 điểm

Cho tam giác ABC nhọn có trực tâm H. Chứng minh:

\(\tan A.\overrightarrow {HA} + \tan B.\overrightarrow {HB} + \tan C.\overrightarrow {HC} = \overrightarrow 0 \).

Xem đáp án
143. Tự luận
1 điểm

Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Xem đáp án
144. Tự luận
1 điểm

Cho x > 0, tìm giá trị nhỏ nhất của M = \(4{x^2} - 3x + \frac{1}{{4x}} + 2021\).

Xem đáp án
145. Tự luận
1 điểm

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có: MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.

Xem đáp án
146. Tự luận
1 điểm

Số 252 có bao nhiêu ước dương?

Xem đáp án
147. Tự luận
1 điểm

Trong lớp 10C có 45 học sinh trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Sử, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên.

Xem đáp án
148. Tự luận
1 điểm

Một hộp sữa hình trụ có bàn kính đáy bằng 6,5 cm. Biết diện tích vỏ hộp (kể cả nắp) là 292,5π cm2. Tính thể tích của hộp sữa đó?

Xem đáp án
149. Tự luận
1 điểm

Một mảnh đất hình chữ nhật có chiều dài là 40m, chiều rộng bằng \(\frac{1}{2}\) chiều dài, trong đó diện tích đất làm nhà chiếm 30%. Tính:

a) Diện tích của mảnh đất đó.

b) Diện tích đất làm nhà là bao nhiêu mét vuông?

Xem đáp án
150. Tự luận
1 điểm

1 người gửi tiết kiệm 50000000 đồng với lãi suất là 0.6%/1 tháng . hỏi sau 1 tháng cả số tiền gửi và tiền lãi là bao nhiêu là bao nhiêu?

Xem đáp án
151. Tự luận
1 điểm

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là \(\frac{{n\left( {n - 3} \right)}}{2}\).

Xem đáp án
152. Tự luận
1 điểm

Theo biểu giá bán lẻ xăng dầu một lít xăng RON 95 – IV có giá 18000 đồng. Do ảnh hưởng dịch Covid – 19 , giá xăng giảm 20 %. Sau đó lại điều chỉnh giảm giá tiếp 10% . Hỏi sau 2 lần điều chỉnh giá xăng là bao nhiêu?

Xem đáp án
153. Tự luận
1 điểm

Tìm x biết:

a) 2075 : 5 = x . 75 : 5 + 40.

b) x + x : 5 . 7,5 + x : 2 . 9 = 315.

Xem đáp án
154. Tự luận
1 điểm

Tính bằng cách thuận tiện nhất 46 : 24 + 8 : 24.

Xem đáp án
155. Tự luận
1 điểm

Tìm nghiệm nguyên của phương trình: x2 + x + 2009 = y2.

Xem đáp án
156. Tự luận
1 điểm

Tìm giá trị nhỏ nhất của A = x4 – 3x3 + 4x2 – 3x + 10.

Xem đáp án
157. Tự luận
1 điểm

Xếp ngẫu nhiên ba bạn nam và ba bạn nữ ngồi thành sáu ghế kê theo hàng ngang. Tìm xác suất cho:

a) Nam, nữ ngồi xen kẽ nhau.

b) Ba bạn nam ngồi bên cạnh nhau.

Xem đáp án
158. Tự luận
1 điểm

Tìm cặp số tự nhiên x,y biết: 6xy – 9x – 4y + 5 = 0.

Xem đáp án
159. Tự luận
1 điểm

Một tấm vải dài 105 m . Nếu cắt đi \(\frac{1}{9}\) tấm vải thứ nhất ,\(\frac{3}{7}\) tấm vải thứ hai và \(\frac{1}{3}\) tấm vải thứ ba thì phần còn lại của ba tấm vải bằng nhau. Hỏi mỗi tấm vải dài bao nhiêu mét?

Xem đáp án
160. Tự luận
1 điểm

Cho α là góc tù và sinα – cosα = \(\frac{4}{5}\). Giá trị của M = sinα – 2cosα là ?

Xem đáp án
161. Tự luận
1 điểm

Cho các số 13,1; 13,01; 1,30.103; 1.3.10–3. Có mấy số có ba chữ số có nghĩa?

Xem đáp án
162. Tự luận
1 điểm

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a biết SA vuông góc với đáy, SA hợp với (SBC) một góc 45°. Tính thể tích hình chóp S.ABC.

Xem đáp án
163. Tự luận
1 điểm

Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B. Chứng minh:
a) Tứ giác ABHM nội tiếp.
b) OA.OB = OH.OM = R2.
c) Tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.
d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.

Xem đáp án
164. Tự luận
1 điểm

Cho tam giác ABC có A’, B’, C’ lần lượt là trung điểm của BC, CA, AB.

a) Chứng minh: \(\overrightarrow {B'C'} = \overrightarrow {CA'} = \overrightarrow {A'B} \).

b) Tìm các vectơ bằng \(\overrightarrow {B'C'} ,\overrightarrow {C'A'} \).

Xem đáp án
165. Tự luận
1 điểm

Cho tam giác ABC có A’, B’, C’ lần lượt là trung điểm của BC, CA, AB.

a) Chứng minh: \(\overrightarrow {B'C'} = \overrightarrow {CA'} = \overrightarrow {A'B} \).

b) Tìm các vectơ bằng \(\overrightarrow {B'C'} ,\overrightarrow {C'A'} \).

Xem đáp án
© All rights reserved VietJack