2048.vn

7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 56)
Quiz

7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 56)

VietJack
VietJack
ToánLớp 1211 lượt thi
88 câu hỏi
1. Trắc nghiệm
1 điểm

Cho hàm số f (x) đồng biến trên khoảng (a; b). Mệnh đề nào sau đây sai?

Hàm số y = f (x + 1) đồng biến trên khoảng (a; b);

Hàm số y = −f (x) + 1 nghịch biến trên khoảng (a; b);

Hàm số y = f (x) + 1 đồng biến trên khoảng (a; b);

Hàm số y = −f (x) − 1 nghịch biến trên khoảng (a; b).

Xem đáp án
2. Trắc nghiệm
1 điểm

Cho hàm số y = f (x) có đạo hàm trên khoảng (a; b). Mệnh đề nào sau đây sai?

Nếu f ¢(x) > 0, "x Î (a; b) thì hàm số y = f (x) đồng biến trên (a; b);

Nếu f ¢(x) = 0, "x Î (a; b) thì hàm số y = f (x) không đổi trên (a; b);

Nếu hàm số y = f (x) nghịch biến trên (a; b) thì f ¢(x) ≤ 0 với mọi x Î (a; b);

Nếu hàm số y = f (x) đồng biến trên (a; b) thì f ¢(x) > 0 với mọi x Î (a; b);

Xem đáp án
3. Tự luận
1 điểm

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD bằng:

Xem đáp án
4. Tự luận
1 điểm

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB. Tính tỉ số thể tích \(\frac{{{V_{S.CDMN}}}}{{{V_{S.CDAB}}}}\).

Xem đáp án
5. Tự luận
1 điểm

Cho tứ diện ABCD có thể tích bằng V, hai điểm M và P lần lượt là trung điểm AB, CD điểm N thuộc AD sao cho AD = 3AN. Tính thể tích tứ diện BMNP.

Xem đáp án
6. Tự luận
1 điểm

Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không trùng trung điểm cạnh BC). Tìm thiết diện của tứ diện cắt bởi mặt phẳng (MNP).

Xem đáp án
7. Tự luận
1 điểm

Tìm tập xác định của hàm số \(y = \sqrt {2 - \sin x} \)

Xem đáp án
8. Tự luận
1 điểm

Tập xác định của hàm số \(y = \frac{2}{{\sqrt {2 - \sin x} }}\):

Xem đáp án
9. Tự luận
1 điểm

Cho hàm số y = 3x + 2 có đồ thị là đường thẳng (d1).

1. Điểm \(A\left( {\frac{1}{3};\;3} \right)\) có thuộc đường thẳng (d1) không? Vì sao?

2. Tìm giá trị của m để đường thẳng (d1) và đường thẳng (d2) có phương trình y = −2x − m cắt nhau tại điểm có hoành độ bằng 1.

Xem đáp án
10. Tự luận
1 điểm

Cho hàm số y = 3x + 2 có đồ thị là đường thẳng (d1).

1. Điểm \(A\left( {\frac{1}{3};\;3} \right)\) có thuộc đường thẳng (d1) không? Vì sao?

2. Tìm giá trị của m để đường thẳng (d1) và đường thẳng (d2) có phương trình y = −2x + m cắt nhau tại điểm có hoành độ bằng 1.

3. Tìm giá trị của tham số m để đường thẳng y = −2x + m cắt hai trục tạo thành tam giác có diện tích bằng 5.

Xem đáp án
11. Trắc nghiệm
1 điểm

Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ. Tìm mệnh đề đúng.

Cho hàm số y = ax^3 + bx^2 + cx + d có đồ thị như hình vẽ. Tìm mệnh đề đúng (ảnh 1)

a < 0, b > 0, c > 0, d < 0;

a < 0, b < 0, c > 0, d < 0;

a > 0, b > 0, c > 0, d < 0;

a < 0, b > 0, c < 0, d < 0.

Xem đáp án
12. Trắc nghiệm
1 điểm

Cho hàm số y = ax3 + bx2 + cx + d có đồ thị hàm số như hình vẽ dưới đây. Khẳng định nào dưới đây là đúng?

Cho hàm số y = ax^3 + bx^2 + cx + d có đồ thị hàm số như hình vẽ dưới đây. Khẳng định (ảnh 1)

a < 0, b < 0, c < 0, d > 0;

a > 0, b < 0, c > 0, d > 0;

a > 0, b > 0, c < 0, d > 0;

a > 0, b < 0, c < 0, d > 0.

Xem đáp án
13. Tự luận
1 điểm

Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A, AB = 2a, \(\widehat {BAC} = 120^\circ ,\;\widehat {SBA} = \widehat {SCA} = 90^\circ \). Biết góc giữa SB và đáy bằng 60°. Tính thể tích V của khối chóp S.ABC.

Xem đáp án
14. Tự luận
1 điểm

Cho hình chóp S.ABC có đáy ABC là ta giác vuông cân tại A, cạnh AB = 2a. Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy Gọi M là trung điểm của SB và N là điểm trên cạnh SC sao cho SC = 3SN. Tính thể tích V của khôi chóp S.AMN.

Xem đáp án
15. Tự luận
1 điểm

Cho hình chóp S.ABC có SA ^ (ABC). AB = a; \(AC = a\sqrt 2 ;\;\widehat {BAC} = 45^\circ \). Gọi B1, C1 lần lượt là hình chiều vuông góc của A lên SB, SC. Tính thể tích mặt cầu ngoại tiếp hình chóp A.BCC1B1.

Xem đáp án
16. Trắc nghiệm
1 điểm

Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, cạnh bên SA vuông góc với đáy, M là trung điểm của BC, J là trung điểm của BM. Mệnh đề nào sau đây đúng?

BC ^ (SAC);

BC ^ (SAJ);

BC ^ (SAM);

BC ^ (SAB).

Xem đáp án
17. Tự luận
1 điểm

Có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh?

Xem đáp án
18. Tự luận
1 điểm

Với tất cả các giá trị thực nào của tham số m thì hàm số y = x3 − 3(m + 1)x2 + 3m(m + 2)x nghịch biến trên đoạn [0; 1]?

Xem đáp án
19. Tự luận
1 điểm

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1)?

Xem đáp án
20. Tự luận
1 điểm

Tìm số đo mỗi góc của ngũ giác đều.

Xem đáp án
21. Tự luận
1 điểm

Tính số đo mỗi góc của ngũ giác đều, lục giác đều, n – giác đều.

Xem đáp án
22. Trắc nghiệm
1 điểm

Đồ thị của hàm số nào sau đây không có trục đối xứng?

y = cos 3x;

y = x2 + 5x − 2;

\(y = \left\{ \begin{array}{l}1\;\;\;\;\;\;\;\;khi\;x \le 0\\\cos x\;\;khi\;x > 0\end{array} \right.\);

y = tan2 3x.

Xem đáp án
23. Trắc nghiệm
1 điểm

Đồ thị hàm số nào sau đây không nhận trục Oy làm trục đối xứng?

y1 = xsin2 x;

y2 = sin2 x;

y3 = cos x;

y4 = xtan 2x.

Xem đáp án
24. Tự luận
1 điểm

Cho hàm số y = (m − 2)x + 2m + 1 (m là tham số)

a) Với giá trị nào của m thì hàm số đồng biến;

b) Tìm m để đồ thị hàm số song song đường thẳng y = 2x − 1;

c) Tìm điểm cố định mà đồ thị hàm số luôn luôn đi qua với mọi giá trị m.

Xem đáp án
25. Tự luận
1 điểm

Cho hàm số y = (2m − 1)x + 2 − m có đồ thị là đường thẳng (d).

a) Tìm m để hàm số đồng biến? Hàm số nghịch biến?

b) Tìm m để (d) cắt Ox tại điểm có hoành độ bằng 3.

c) Tìm m để (d) song song với đường thẳng y = x + 3. Với giá trị của m vừa tìm được hãy vẽ đường thẳng (d); gọi giao điểm của (d) với Ox và Oy lần lượt là M, N. Tính diện tích tam giác OMN.

d) Cho các đường thẳng d1: 2x − y + 7 = 0; d2: x + y − 1 = 0. Tìm m để 3 đường thẳng d; d1; d2 đồng quy.

Xem đáp án
26. Tự luận
1 điểm

Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Tính khoảng cách từ A đến mặt phẳng (A'BC).

Xem đáp án
27. Tự luận
1 điểm

Hình lăng trụ tam giác đều có tất cả các cạnh bằng nhau có bao nhiêu mặt phẳng đối xứng?

Xem đáp án
28. Tự luận
1 điểm

Cho khối lăng trụ tam giác đều ABC.A'B'C'. Gọi M là trung điểm cạnh AA'. Mặt phẳng (MBC) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.

Xem đáp án
29. Tự luận
1 điểm

Cho khối lăng trụ tam giác ABC.A'B'C', đáy là tam giác ABC đều cạnh a. Gọi M là trung điểm AC. Biết tam giác A'MB cân tại A' và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Góc giữa A'B với mặt phẳng (ABC) là 30°. Thể tích khối lăng trụ đã cho là:

Xem đáp án
30. Tự luận
1 điểm

Giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=(35sinx)2018 là M và m. Khi đó giá trị M + m là:

Xem đáp án
31. Tự luận
1 điểm

Cho hàm số: y=35sinx, giá trị lớn nhất và nhỏ nhất của hàm số là M và m. Tính \(\frac{M}{m}\).

Xem đáp án
32. Tự luận
1 điểm

Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1; x2 thỏa mãn x12 + x22 = 6.

Xem đáp án
33. Tự luận
1 điểm

Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.

Xem đáp án
34. Tự luận
1 điểm

Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Tính xác suất để 3 người được chọn không có cặp vợ chồng nào

Xem đáp án
35. Tự luận
1 điểm

Trong một buổi liên hoan có 6 cặp nam nữ, trong đó có 3 cặp là vợ chồng. Chọn ngẫu nhiên 3 người trong số đó tham gia trò chơi. Tính xác suất để trong 3 người dược chọn không có cặp vợ chồng nào

Xem đáp án
36. Tự luận
1 điểm

Cho hàm số y = x4 − 2mx2 + 3m − 2 (với m là tham số). Có bao nhiêu giá trị của tham số m để các điểm cực trị của đồ thị hàm số đều nằm trên các trục tọa độ?

Xem đáp án
37. Tự luận
1 điểm

Tìm các giá trị của tham số m để đồ thị hàm số: y = x4 − 2mx2 + 2m + m4 có ba điểm cực trị là ba đỉnh của một tam giác đều.

Xem đáp án
38. Tự luận
1 điểm

Rút gọn biểu thức: \(P = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}}\).

Xem đáp án
39. Tự luận
1 điểm

Cho biểu thức: \(A = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\).

a) Tìm ĐKXĐ.

b) Rút gọn biểu thức.

c) Với giá trị nguyên nào của a thì A đạt giá trị nhỏ nhất.

Xem đáp án
40. Tự luận
1 điểm

Tìm giá trị nhỏ nhất của hàm số \(y = 3 + \sqrt {{x^2} - 2x + 5} \).

Xem đáp án
41. Tự luận
1 điểm

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {{x^2} - 2x + 3} \) trên [0; 4].

Xem đáp án
42. Tự luận
1 điểm

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA = 2a. Tính theo a thể tích khối chóp S.ABCD.

Xem đáp án
43. Tự luận
1 điểm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mạt phẳng vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SCD) và (ABCD) là 60°. Tính thể tích của khối chóp S.ABCD.

Xem đáp án
44. Tự luận
1 điểm

Cho hình chóp S.ABCD, cạnh đáy ABCD là nửa lục giác đều nội tiếp đường tròn có đường kính AB = 2a, SA vuông góc với hai mặt phẳng (ABCD) và \(SA = a\sqrt 3 \). Tính góc giữa hai mặt phẳng (SBC) và (SCD).

Xem đáp án
45. Tự luận
1 điểm

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Tính cosin của góc giữa một mặt bên và một mặt đáy.

Xem đáp án
46. Trắc nghiệm
1 điểm

Cho năm điểm A; B; C; D; E. Khẳng định nào đúng?

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} = 2\left( {\overrightarrow {AE} - \overrightarrow {DB} + \overrightarrow {CB} } \right)\);

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} = 3\left( {\overrightarrow {AE} - \overrightarrow {DB} + \overrightarrow {CB} } \right)\);

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} = \frac{{\overrightarrow {AE} - \overrightarrow {DB} + \overrightarrow {CB} }}{4}\);

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} = \overrightarrow {AE} - \overrightarrow {DB} + \overrightarrow {CB} \).

Xem đáp án
47. Trắc nghiệm
1 điểm

Cho năm điểm A; B; C; D; E. Khẳng định nào đúng?

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} = \overrightarrow {CB} \);

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} = \overrightarrow 0 \);

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} = \overrightarrow {ED} \);

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} = \overrightarrow {CB} + \overrightarrow {ED} \).

Xem đáp án
48. Tự luận
1 điểm

Cho khối chóp S.ABC có SA, SB, SC đôi một vuông góc và SA = a, SB = b, SC = c. Tính thể tích V của khối chóp đó theo a, b, c.

Xem đáp án
49. Tự luận
1 điểm

Cho hình chóp tam giác S.ABC với SA, SB, SC đôi một vuông góc và SA = SB = SC = a. Tính thể tích của khối chóp S.ABC.

Xem đáp án
50. Tự luận
1 điểm

Có bao nhiêu số tự nhiên có 5 chữ số trong đó các chữ số cách đều chữ số đứng giữa thì giống nhau?

Xem đáp án
51. Tự luận
1 điểm

Cho hình lập phương ABCD.A'B'C'D' cạnh bằng \(a\sqrt 2 \). Gọi M, N, E, F, P, Q lần lượt là tâm của 6 mặt của hình lập phương. Tính thể tích khối đa diện MNEFPQ.

Xem đáp án
52. Tự luận
1 điểm

Cho hình lập phương ABCD có cạnh là 2. Gọi M, N lần lượt là trung điểm của BC và CD. Tính diện tích thiết diện của hình lập phương khi cắt bởi mặt phẳng (A'MN).

Xem đáp án
53. Tự luận
1 điểm

Tìm mệnh đề phủ định của mệnh đề: "x Î ℝ, x2 + x + 5 > 0.

Xem đáp án
54. Tự luận
1 điểm

Phủ định của mệnh đề “"x Î ℝ, x2 ≥ 0” là mệnh đề: “x Î ℝ, x2 < 0”.

Xem đáp án
55. Tự luận
1 điểm

Cho hàm số \(y = \frac{{x + 2}}{{2x + 1}}\). Xác định m để đường thẳng y = mx + m − 1 luôn cắt đồ thị hàm số tại hai điểm thuộc về hai nhánh của đồ thị.

Xem đáp án
56. Tự luận
1 điểm

Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị.

Xem đáp án
57. Trắc nghiệm
1 điểm

Gọi M, m tương ứng là GTLN và GTNN của hàm số \(y = \frac{{2\cos x + 1}}{{\cos x - 2}}\). Khẳng định nào sau đây đúng?

M + 9m = 0;

9M − m = 0;

9M + m = 0;

M + m = 0.

Xem đáp án
58. Tự luận
1 điểm

Tìm GTLN và GTNN của hàm số sau: \(y = 1 - \sqrt {2{{\cos }^2}x + 1} \).

Xem đáp án
59. Tự luận
1 điểm

Tìm hệ số của x5 trong khai triển P (x) = (x + 1)6 + (x + 1)7 + … + (x + 1)12.

Xem đáp án
60. Tự luận
1 điểm

Giải phương trình: \(\sqrt {3x - 2} - \sqrt {x + 1} = 2{x^2} - x - 3\).

Xem đáp án
61. Trắc nghiệm
1 điểm

Giải phương trình: \(\sqrt {3x - 2} - \sqrt {x + 1} = 2{x^2} + x - 6\) ta được nghiệm duy nhất x0. Chọn câu đúng.

x0 < 1;

x0 > 2;

0 < x0 < 1;

1 < x0 < 2.

Xem đáp án
62. Tự luận
1 điểm

Cho hai đường thẳng song song d1 và d2. Trên d1 lấy 17 điểm phân biệt, trên d2 lấy 20 điểm phân biệt. Tính số tam giác mà có các đỉnh được chọn từ 37 điểm này.

Xem đáp án
63. Tự luận
1 điểm

Cho hàm số y = −x3 − mx2 + (4m + 9)x + 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (−∞; +∞)?

Xem đáp án
64. Tự luận
1 điểm

Cho p và q là các số dương thỏa mãn log9= log12= log16 (p + q). Tính giá trị của \(\frac{q}{p}\).

Xem đáp án
65. Tự luận
1 điểm

Số thực x thỏa mãn log2 (log4 x) = log4 (log2 x) − a, a Î ℝ. Giá trị của log2 x bằng bao nhiêu?

Xem đáp án
66. Tự luận
1 điểm

Cho số thực x thảo mãn log2 (log8 x) = log8 (log2 x). Tính giá trị của P = (log2 x)2.

Xem đáp án
67. Tự luận
1 điểm

Cho đường tròn (O; R). Có bao nhiêu phép vị tự biến (O; R) thành chính nó?

Xem đáp án
68. Tự luận
1 điểm

Tìm chu kì tuần hoàn của hàm số y = 2cos2 x + 2017.

Xem đáp án
69. Trắc nghiệm
1 điểm

Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

y = sin x;

y = x + 1;

y = x2.

\(y = \frac{{x - 1}}{{x + 2}}\).

Xem đáp án
70. Tự luận
1 điểm

Tìm x để hàm số \(y = x + \sqrt {4 - {x^2}} \) đạt giá trị lớn nhất

Xem đáp án
71. Tự luận
1 điểm

Hàm số \(y = \sqrt {4 - {x^2}} \) đạt giá trị nhỏ nhất tại:

Xem đáp án
72. Tự luận
1 điểm

Gọi M, N là giao điểm của đường thẳng y = x + 1 và đường cong \(y = \frac{{2x + 4}}{{x - 1}}\). Tìm hoành độ trung điểm I của đoạn thẳng MN.

Xem đáp án
73. Tự luận
1 điểm

Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \({2^{2x + 4}} - {3^{{x^2}}}\,.\,m = 0\) có hai nghiệm thực phân biệt?

Xem đáp án
74. Tự luận
1 điểm

Có bao nhiêu giá trị nguyên của m để phương trình 22x + 1 − 2x + 3 − 2m = 0 có hai nghiệm phân biệt?

Xem đáp án
75. Trắc nghiệm
1 điểm

Cho hàm số y = −x4 + 2x2 + 3. Mệnh đề nào sau đây là đúng?

Đồ thị hàm số có 1 điểm cực đại và không có điểm cực tiểu;

Đồ thị hàm số có 1 điểm cực tiểu và 2 điểm cực đại;

Đồ thị hàm số có 1 điểm cực tiểu và không có điểm cực đại;

Đồ thị hàm số có 1 điểm cực đại và 2 điểm cực tiểu.

Xem đáp án
76. Tự luận
1 điểm

Cho hàm số y = x4 − 2x2 + 1. Xét các mệnh đề sau đây

(1) Hàm số có 3 điểm cực trị;

(2) Hàm số đồng biến trên các khoảng (−1; 0); (1; +∞);

(3) Hàm số có 1 điểm cực trị;

(4) Hàm số nghịch biến trên các khoảng (−∞;1); (0;1).

Có bao nhiêu mệnh đề đúng trong bốn mệnh đề trên?

Xem đáp án
77. Tự luận
1 điểm

Trong mặt phẳng Oxy, cho A(x1; y1); B(x2; y2). Tìm tọa độ trung điểm của đoạn thẳng AB.

Xem đáp án
78. Tự luận
1 điểm

Trong mặt phẳng Oxy cho A(x1; y1). Hai điểm A, B đối xứng nhau qua đường phân giác của góc phần tư thứ tư. Tìm tọa độ của điểm B.

Xem đáp án
79. Tự luận
1 điểm

Trong mặt phẳng Oxy cho tam giác ABC có A(4; 3), B(−1; 2), C(1; −1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án
80. Tự luận
1 điểm

Cho ba điểm A(2; 2), B(3; 5), C(5; 5). Tìm tọa độ điểm D sao cho ABCD là một hình bình hành.

Xem đáp án
81. Tự luận
1 điểm

Tìm tất cả các giá trị của tham số m để hàm số y = x3 + x2 + mx + 1 đồng biến trên khoảng (−∞; +∞).

Xem đáp án
82. Tự luận
1 điểm

Tìm tất cả các giá trị của tham số m để hàm số y = −x3 + 3x2 + mx + 1 nghịch biến trên khoảng (0; +∞).

Xem đáp án
83. Tự luận
1 điểm

Cho hàm số y = (m − 1)x + m. Xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2.

Xem đáp án
84. Tự luận
1 điểm

Cho y = 2x + m + 1. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2.

Xem đáp án
85. Tự luận
1 điểm

Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H (D Î BC, E Î AC, F Î AB). Chứng minh các tứ giác BDHF, BFEC nội tiếp.

Xem đáp án
86. Tự luận
1 điểm

Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại M, N (F nằm giữa M và E). Chứng minh rằng: .

Xem đáp án
87. Tự luận
1 điểm

Tìm tất cả các giá trị thực của tham số m để hàm số: \(y = \frac{1}{3}{x^3} + m{x^2} + \left( {m + 6} \right)x + m\) có cực đại và cực tiểu 

Xem đáp án
88. Tự luận
1 điểm

Cho hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {2m - 1} \right)x - m + 2\) có cực đại, cực tiểu và hoành độ các điểm cực trị dương. Tìm tập giá trị của m.

Xem đáp án
© All rights reserved VietJack