5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 26)
63 câu hỏi
Chứng minh hằng đẳng thức:
(a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a).
Chứng minh: a3 + b3 + c3 = 3abc biết a + b + c = 0.
Cho hàm số y = f(x). Hàm số y = f '(x) có đồ thị hàm số như hình bên. Hỏi hàm số y = f(2 – x) đồng biến trên khoảng:

(1; 3);
x > 3;
x < −2;
Đáp án khác.
Một nhóm gồm 10 học sinh trong đó có An và Bình, đứng ngẫu nhiên thành một hàng. Xác suất để An và Bình đứng cạnh nhau là:
\(\frac{2}{5}\);
\(\frac{1}{{10}}\);
\(\frac{1}{5}\);
\(\frac{1}{4}\).
Một nhóm 10 học sinh gồm 5 học sinh nam trong đó có An và 5 học sinh nữ trong đó có Bình được xếp ngồi vào 10 cái ghế trên một hàng ngang. Hỏi có bao nhiêu cách sắp xếp nam và nữ ngồi xen kẽ, đồng thời An không ngồi cạnh Bình?
16.(4!)2;
16.8!;
32.(4!)2;
32.8!.
Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.
a) Chứng minh ∆ABC vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ∆CBD cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).
c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) cà từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).
d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.
Hai bạn An và Khang đi mua 18 gói bánh và 12 gói kẹo để đến lớp ăn liên hoan. An đưa cho cô bán hàng 4 tờ 50 000 đồng và đc trả lại 72 000 đồng. Khang nói "cô tính sai rồi". Em hãy cho biết Khang nói đúng hay sai? Giải thích tại sao?
Số nghiệm của phương trình 2tanx – 2cotx – 3 = 0 trong khoảng \(\left( { - \frac{\pi }{2};\pi } \right)\) là:
2;
1;
4;
3.
Cho tam giác ABC có \(\widehat A = 120^\circ \), AB = 3 cm, AC = 6 cm. Tính độ dài đường phân giác AD.
Vào buổi sáng một cửa hàng bán bánh với giá 50 000 đồng/cái. Buổi chiều, chủ cửa hàng quyết định giảm giá 20% so với buổi sáng nhờ đó số lượng bánh bán ra buổi chiều tăng 50% so với buổi sáng và tổng số tiền thu được cả ngày là 13 200 000 đồng. Hỏi cả ngày cửa hàng bán được bao nhiêu cái bánh?
Cho đường tròn (O; R) có đường kính AB và điểm M thuộc đường tròn sao cho MA < MB (M khác A,B). Trên tia đối của tia MA lấy điểm N sao cho MN = MA. NB cắt (O) tại C, AC cắt BM tại E. Chứng minh:EM.EB = EC.EN.
Trong mặt phẳng tọa độ Oxy cho ba điểm A(0;3), B(2;−1), C(−1;5) phép vị tự tâm A tỉ số k biến B thành C khi đó giá trị k bằng bao nhiêu?
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.
a) CM: AE.AB = AF.AC;
b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;
c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.
Cho hìnhlăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a, A’C hợp với mặt đáy một góc 60o. Tính thể tích của khối lăng trụ ABC.A’B’C’.
\(\frac{{3{a^3}}}{4}\);
\(\frac{{{a^2}}}{4}\);
\(\frac{{2{a^3}}}{3}\);
\(\frac{{3{a^3}}}{8}\)
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.
Cho \(\Delta ABC\) đều cạnh A và G là trọng tâm. Gọi I là trung điểm của AG. Tính độ dài các vecto \(\overrightarrow {AB} ,\,\,\overrightarrow {AG} ,\,\,\overrightarrow {BI} \).
Cho tam giác ABC có \(\widehat B = 120^\circ \), BC = 12 cm, AB = 6 cm. Đường phân giác của góc B cắt cạnh AC tại D. Gọi M là trung điểm của BC.
Chứng minh AM ⊥ BD.
Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn OA sao cho OH = 1 cm. Kẻ dây cung CD vuông góc với AB tại H.
a) Chứng minh: \(\Delta ABC\) vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh \(\Delta BCD\) cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).
Cho đường tròn (O) bán kính OA = 4 cm. Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài BC.
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn (O) tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K (K khác B và M). Gọi H là giao điểm của AK và MN.
a) Chứng minh tứ giác BCHK nội tiếp đường tròn.
b) Chứng minh AK.AH = R2.
Cho tam giác ABC, chứng minh:
\(sin\widehat A + \sin \widehat B + \sin \widehat C = 4.\cos \frac{{\widehat A}}{2}.\cos \frac{{\widehat B}}{2}.\cos \frac{{\widehat C}}{2}\).
Giải phương trình: sinx + cosx = 1.
Nếu \(\sin x + \cos x = \frac{1}{2}\) thì sinx, cosx bằng?
Giải phương trình \(\tan x = - \sqrt 3 \).
Phương trình \(\tan x = \sqrt 3 \) có bao nhiêu nghiệm thuộc khoảng
(−2017π; 2017π)?
4033;
2017;
4034;
4035.
Cho A = 75 + 1205 + 2008 + x, (x ∈ ℕ). Tìm điều kiện của x để \(A\,\, \vdots \,\,5\).
Viết tập hợp A là các số \(x\,\, \vdots \,\,5\), thỏa mãn 124 < x < 145 bằng cách liệt kê các phần tử.
Tập giá trị của hàm số \(y = 2 + \sqrt {1 - {{\sin }^2}2x} \) là:
[1; 2];
[0; 2];
[1; 3];
[2; 3].
Tập giá trị của hàm số \(y = 2{\sin ^2}x + 8\sin x + \frac{{21}}{4}\) là:
\(\left[ { - \frac{3}{4};\frac{{61}}{4}} \right]\);
\(\left[ {\frac{{11}}{4};\frac{{61}}{4}} \right]\);
\(\left[ { - \frac{{11}}{4};\frac{{61}}{4}} \right]\);
\(\left[ {\frac{3}{4};\frac{{61}}{4}} \right]\).
Từ một điểm M ở ngoài đường tròn tâm O vẽ hai tiếp tuyến MA, MB với đường tròn (A,B là hai tiếp điểm). Trên đoạn thẳng AB lấy điểm H (H khác A,B). Qua H kẻ đường thẳng vuông góc với OH cắt đường thẳng MA ở E, cắt đường thẳng MB ở F.
a) Chứng minh tứ giác có bốn đỉnh O, H, A, E là tứ giác nội tiếp.
b) Chứng minh tam giác OEF cân.
c) Kẻ OI vuông góc AB ( I thuộc AB). Chứng minh OI.OF = OB.OH
Biến đổi biểu thức x1 + 2x2 = 1 và \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{1}{2}({x_1} + {x_2})\) để đưa về biểu thức có chứa tổng nghiệm x1 + x2 và tích nghiệm x1x2.
Cho hàm số: \(y = \frac{m}{3}{x^3} - (m - 1){x^2} + 3(m - 2)x + 1\)để hàm số đạt cực đại x1, x2 thỏa mãn x1 + 2x2 = 1 thì giá trị của m bằng?
Cho phương trình: x2 – 2x + m = 0.
a) Tìm m để phương trình có nghiệm.
b) Chứng minh rằng với mọi m phương trình không thể có hai nghiệm cùng là số âm.
Cho phương trình x2 – (m + 2)x – 8 = 0 (m là tham số)
a) Giải phương trình khi m = 0.
b) Tính giá trị của m để phương trình luôn có hai nghiệm x1; x2 thỏa mãn
x1(1 – x2) + x2(1 – x1) = 8.
Giải các phương trình sau:
a) x2 – 5 = 0;
b) \({x^2} - 2\sqrt {11} x + 11 = 0\).
Giải phương trình:
a) x2 – 11x + 30 = 0.
b) x2 – 10x + 21 = 0.
Cho tam giác ABC có trọng tâm G và tâm đường tròn ngoại tiếp O thỏa mãn \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow 0 \). Hỏi trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?
1) \[\overrightarrow {OG} = \vec 0\].
2) Tam giác ABC là tam giác vuông cân.
3) Tam giác ABC là tam giác đều.
4) Tam giác ABC là tam giác cân.
Cho hình vẽ biết xx’//yy’ và \(\widehat {xAB} = 70^\circ \). Tính số đô góc \(\widehat {yBz'}\) và \(\widehat {ABy}\).

Xác định hàm số y = ax + b biết rằng đồ thị của nó đi qua hai điểm
A(−1; −3) và B(0; 2).
1) Xác định hàm số y = ax + b, biết rằng đồ thị hàm số đi qua hai điểm
A(2; −4) và B(−1; 5).
2) Trên hệ trục tọa độ Oxy, vẽ đồ thị hàm số y = −2x + 1.
Tính diệm tích của tam giác GHK biết diện tích của một ô vuông nhỏ là 10cm2.

Cho hình vẽ:

a) Giải thích tại sao xx’//yy’.
b) Tính số đo \(\widehat {MNB}\).
Tìm x, biết:
a) x2 + 4 = 4x;
b) 2x2 + 7x + 3 = 0.
Xét dấu của các tam thức bậc hai sau:
a) x2 + 8x + 16;
b)−2x2 + 7x – 3.
Rút gọn biểu thức:
S = cos(90° − x).sin(180° − x) – sin(90° − x).cos(180° − x).
Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\). Với abcd ≠ 0 chứng minh:
a) \(\frac{{a + c}}{c} = \frac{{b + d}}{d}\).
b) \(\frac{{a + c}}{{b + d}} = \frac{{a - c}}{{b - d}}\).
Cho 6 điểm A, B, C, D, E, F. Tổng \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} \) bằng:
\(\overrightarrow {AF} + \overrightarrow {CE} + \overrightarrow {DB} \);
\(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {DF} \);
\(\overrightarrow {AD} + \overrightarrow {CF} + \overrightarrow {EB} \);
\(\overrightarrow {AE} + \overrightarrow {BC} + \overrightarrow {DF} \).
Cho hình thang ABCD (AB//CD) có BC = 15 cm. Điểm E thuộc cạnh AD sao cho \(\frac{{AE}}{{AD}} = \frac{1}{3}\). Qua E kẻ đường thẳng song song với CD cắt BC tại F. Tính độ dài BF.
10 cm;
5 cm;
11 cm;
7 cm.
Cho hình bình hành ABCD có tâm O. Tìm vecto từ 5 điểm A, B, C, D bằng \(\overrightarrow {AB} ;\,\,\overrightarrow {OB} \).
\(\overrightarrow {AB} = \overrightarrow {AC} ,\overrightarrow {OB} = \overrightarrow {AO} \);
\(\overrightarrow {AB} = \overrightarrow {OC} ;\overrightarrow {OB} = \overrightarrow {DO} \);
\(\overrightarrow {AB} = \overrightarrow {DC} ;\overrightarrow {OB} = \overrightarrow {AO} \);
\(\overrightarrow {AB} = \overrightarrow {DC} ;\overrightarrow {OB} = \overrightarrow {DO} \).
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M là trung điểm của SB, G là trọng tâm tam giác SAD. Tìm giao tuyến mp(SGM) với mp(ABCD). Tìm giao điểm I của GM và mp(ABCD).
Cho hình chóp S.ABCD, đáy ABCD là tứ giác có các cạnh đối diện không song song. Lấy điểm M thuộc miền trong tam giác SCD. Tìm giao tuyến của hai mặt phẳng (ABM) và (SCD).
Cho tam giác ABC vuông tại A, đường cao AH (H ∈ BC). Biết độ dài đoạn BC = 10 cm và \(\sin \widehat {ABC} = \frac{4}{5}\). Tính độ dài các đoạn AC và BH.
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC = 10 cm và \(\sin \widehat {ACB} = \frac{3}{5}\). Tính độ dài các đoạn AB, AC và AH.
Cho tam giác ABC vuông tại A, AB = 3 cm, BC = 5 cm. Độ dài cạnh AC là:
3 cm;
4 cm;
5 cm;
6 cm.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a) Tứ giác ADHE là hình gì? Vì sao?
b) Chứng minh: AB2 = AH.BC.
Cho phương trình: x2 – 2(m + 1)x + 4m = 0 (1) (m là tham số)
a) Giải phương trình (1) với m = 2.
b) Chứng tỏ phương trình (1) luôn có nghiệm x1; x2 mọi m.
c) Tìm giá trị của m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn:
x1(1 + x2) + x2(1 + x1) = 7.
Có bao nhiêu số có 3 chữ số chia hết cho 9 được lập từ các chữ số 1, 3, 5, và 7 biết rằng mỗi chữ số được phép lặp lại?
Cho 5 số 5; 2; 7; 3; 9. Có bao nhiêu số tự nhiên có ba chữ số và chia hết cho 9 được lập từ các số trên mà các chữ số không lặp lại.
6;
4;
5;
2.
Lan lấy một số chia cho 9 dư 5. Hỏi Lan lấy số đó chia 3 dư mấy?
Cho biểu thức \(A = 1:\left( {\frac{{x + 2\sqrt x - 2}}{{x\sqrt x + 1}} - \frac{{\sqrt x - 1}}{{x - \sqrt x + 1}} + \frac{1}{{\sqrt x + 1}}} \right)\).
a) Rút gọn A.
b) Tính giá trị của A nếu \(x = 7 - 4\sqrt 3 \).
Tìm tính chất tam giác ABC biết rằng: \(BC = 2AC.\cos \widehat C\).
Cho tập hợp A = [−5; 3). Tập hợp CRA là:
\(\left( { - \infty ; - 5} \right) \cup \left[ {3; + \infty } \right)\);
\(\left( {5; + \infty } \right)\);
\(\left[ {3; + \infty } \right)\);
\(\left( { - \infty ; - 5} \right)\).
Ước của 240 là:
18;
16;
20;
22.








