6 câu hỏi
Tìm tất cả các giá tị thực của tham số m để hàm số
y = x3 − 3x2 + (m + 1)x + 2 có hai điểm cực trị.
m £ 2;
m > 2;
m < 2;
m < −4.
Tìm tất cả các giá tị thực của tham số m để hàm số
y = −x2 + (m − 1)x + 2 nghịch biến trên khoảng (1; 2).
m < 5;
m > 5;
m < 3;
m > 3.
Cho hình vuông ABCD cạnh a, tâm O và M là trung điểm AB.Tính độ dài của các vectơ\[\overrightarrow {OA} + \overrightarrow {OB} \,.\]
a;
3a;
\(\frac{a}{2};\)
2a.
Cho hình vuông ABCD cạnh a, tâm O. Tính \[\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right|.\]
\[\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = a;\]
\[\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = a\sqrt 2 ;\]
\[\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = \frac{a}{2};\]
\[\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = \frac{{a\sqrt 2 }}{2}.\]
Trong mặt phẳng Oxy cho điểm M(2;3). Trong bốn điểm sau, ảnh của M qua phép đối xứng qua đường thẳng x − y = 0 là
A(3;2);
C(3; −2);
B(2; −3);
D(−2;3).
Trong mặt phẳng tọa độ Oxy, cho điểm M (−2;3). Hỏi trong bốn điểm sau, điểm nào là ảnh của M qua phép đối xứng với trục là đường thẳng d: x − y = 0?
A(−2; −3);
A(2; −3);
A(3; 2);
A(3; −2).
