5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 15)
72 câu hỏi
Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tạiM,đườngphângiáccủagócBcắtCDtạiN.
a) Chứng minh:AM=CN.
b) Chứng minh: tứ giác DMBN là hình bình hành.
Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh rằng DE // BF.
b) Tứ giác DEBF là hình gì? Vì sao?
Khi viết một số có sáu chữ số, một học sinh đã viết nhầm chữ số 6 ở hàng trăm nghìn thành chữ số 1 và chữ số 1 ở hàng đơn vị thành chữ số 6. Hỏi số đó giảm đi bao nhiêu đơn vị?
Khi viết một số có sáu chữ số, một học sinh đã viết nhầm chữ số 6 ở hàng trăm nghìn thành chữ số 5 và chữ số 5 ở hàng đơn vị thành chữ số 6. Hỏi số đó giảm đi bao nhiêu đơn vị?
Rút gọn biểu thức:\(\frac{{x - y + 3\sqrt x + 3\sqrt y }}{{\sqrt x - \sqrt y + 3}}\).
Tìm các số không âm x,y sao cho biểu thức A đạt giá trị nhỏ nhất
\[{\rm{A}} = x + y - \sqrt {x - 3} .\sqrt {y - 2021} \]
Cho hình bình hành ABCD có AB > BC. Đướng phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại Na) Chứng minh AM = CNb) Chứng minh tứ giác BMDN là hình bình hành.c) Gọi H,K lần lượt là hình chiếu M và N trên BN và DM. Tứ giác MHNK là hình gì? Vì sao?d) Chứng minh ba đường thẳng AC, MN, KH đồng quy.
Tìm x, y nguyên thỏa mãn: x2 + 2xy + 7(x + y) + 2y2 + 10 = 0.
Cho x, y thỏa mãn x2 + 2xy + 7(x + y) + 2y2 + 10 = 0.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = x + y + 1.
Cho dãy số (un) với un = \(\frac{{a{n^2}}}{{n + 1}}\)(a: hằng số); un+1 là số hạng nào sau đây ?
\({u_{n + 1}} = \frac{{a{{(n + 1)}^2}}}{{n + 2}}\);
\({u_{n + 1}} = \frac{{a{{(n + 1)}^2}}}{{n + 1}}\);
\({u_{n + 1}} = \frac{{a{n^2} + 1}}{{n + 1}}\);
\({u_{n + 1}} = \frac{{a{n^2}}}{{n + 2}}\).
Cho x ≠ 0, biểu thức nào sau đây có nghĩa?
\(P = {x^{\sqrt 2 }}\)
\(P = {x^{ - 5}}\).
\(P = {x^{\frac{2}{3}}}\)
\(P = {x^{ - \pi }}\)
Cho x > 0, biểu thức nào sau đây có nghĩa?
\(\sqrt {2 - x} \);
\(\sqrt {x - 2} \);
\(\sqrt {2x} \);
\(\sqrt { - 2x} \).
Cho hàm số y = (2m – 3).x + m – 5. Tìm m để đồ thị hàm số:
a) tạo với 2 trục tọa độ một tam giác vuông cân
b) cắt đường thẳng y = 3x – 4 tại một điểm trên Oy
c) cắt đường thẳng y = – x – 3 tại một điểm trên Ox.
Cho đồ thị hàm số y = (m – 2)x + m – 1. Tìm m để đồ thị hàm số trên tạo với hai trục tọa độ một tam giác vuông cân.
Cho a, b, c đôi một khác nhau thỏa mãn \(\frac{{a + b}}{c} = \frac{{b + c}}{a} = \frac{{c + a}}{b}\)
Tính giá trị của biểu thức \(P = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\).
Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
Cho hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), \[AB = AD = \frac{1}{2}CD\]. Gọi E là trung điểm của CD. M là giao điểm của AC và BE, K là giao điểm của AE và DM. Kẻ DH vuông góc với AC, cắt AE ở I.
a) Tứ giác ABCE là hình gì?
b) Tứ giác ABED là hình gì?
c) Tứ giác BIDK là hình gì?
Cho hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), AB = 6 cm, CD = 12 cm, AD = 17 cm. Trên cạnh AD, đặt đoạn AE = 8cm. Chứng minh \(\widehat {BEC} = 90^\circ \).
Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC, BC. Gọi K là điểm trên cạnh BD với KB = 2KD. Xác định thiết diện của tứ diện cắt bởi mặt phẳng (IJK). Chứng minh thiết diện là hình thang cân.
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC; gọi E là điểm thuộc CD sao cho ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:
Tam giác MNE.
Tứ giác MNEF với F là trung điểm BD.
Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC.
Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC.
Mỗi hộp bút có 12 chiếc bút,mỗi chiếc giá 1 500 đồng.Hỏi mua 35 hộp bút đó thì hết bao nhiêu tiền ?(Giải bằng hai cách)
Tìm tập xác định D của hàm số \[y = {\left( {{x^3}--{x^2}} \right)^{ - 5}}\]
D = (– ∞; 0) ∪ (1; + ∞).
D = ℝ \ {0; 1}.
D =ℝ.
D = (0; 1).
Tìm tập xác định của hàm số \[y = {\left( {2x--3} \right)^{ - 2}}\]
\(\mathbb{R}\backslash \left\{ {\frac{3}{2}} \right\}\);
\(\left( {\frac{3}{2}; + \infty } \right)\);
ℝ ∖\(\left\{ 0 \right\}\);
ℝ .
Cho hình bình hành ABCD . Chứng minh \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \)
Cho ba điểm A, B, C. Chứng minh: \[3\left( {\overrightarrow {AB} + 2\,\overrightarrow {BC} } \right) - 2\left( {\overrightarrow {AB} + 3\,\overrightarrow {BC} } \right) = \overrightarrow {AB} \].
Tính
a) 372,95 : 3.
b) 757,5 : 35.
c) 431,25 : 125.
d) 35,1 : 15.
Tính
a) 372,95 : 3.
b) 757,5 : 35.
c) 431,25:125.
d) 35,1 × 8,5.
Phân tích thành nhân tử 5(x + 3y) – 15x(x + 3y).
Phân tích thành nhân tử
a) 5(x + 3y) – 15x(x + 3y);
b) 2(x + 1)2 – y(x + 1);
c) xy(x + y)2 – y(x + y);
d) xy(x – y) – 2x + 2y.
Cho 5 điểm A, B, C, D, E. Chứng minh rằng:
a)\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).
b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.
Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng vuông góc với OB tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
a) Chứng minh: AMON là hình thoi.
b) Chứng minh: MN là tiếp tuyến của đường tròn.
c) Tính diện tích AMON.
Cho đường tròn (O; R) có đường kính AB. Vẽ tiếp tuyến Ax, By của đường tròn(O) lấy một điểm C sao cho AC < BC. Tiếp tuyến tại C của đường tròn (O) cắt Ax, By lần lượt tại E, F.
a) Chứng minh EF= AE+ BF.
b) BC cắt Ax tại D. Chứng minh AD2 = DC. DB.
c) Gọi I là giao điểm của OD và AC, OE cắt AC tại H, tia DH cắt AB tại K. Chứng minh IK//AD.
d) IK cắt EO tại M. Chứng minh: A,M,F thẳng hàng.
Cho (O; R) có AB là đường kính. Lấy điểm C thuộc tiếp tuyến Ax, BC cắt đường tròn (O) tại H.
a) Chứng minh BH . BC = 4R2.
b) Phân giác của góc ABC cắt (O) ở M và cắt AC ở D. Chứng minh BM . BD = BH . BC.
c) Gọi K là trung điểm của AC. Chứng minh KH là tiếp tuyến của đường tròn (O).
Cho các số a, b, c khác nhau đôi một và thoả mãn a2 – 2b = b2 – 2c = c2 – 2a.
Tính giá trị của biểu thứcA = (a + b + 2)(b + c + 2)(c + a + 2).
Cho các tập hợp A = {x ∈ R/x2 ≤4}; B = {x ∈ R/x < 1}. Viết các tập hợp sau đây A ∪ B, A ∩ B, A ∖ B, CRB dưới dạng các khoảng, nửa khoảng, đoạn.
Cho các tập hợp A = {x ∈ R: x2 + 4 = 0}; B = {x ∈ R: (x2 - 4)(x2 + 1) = 0}; C = {-2; 2}; D = {x ∈ R: |x| < 2}. Khẳng định nào sau đây đúng?
A ⊂ B
C ⊂ A
D ⊂ B
D ⊂ C.
Cho diện tích miếng đất hình chữ nhật 24m2 . Người ta dùng diện tích hình tam giác trồng hoa với kích thước như hình vẽ . Hãy tính diện tích trồng hoa.
Cho hình thoi ABCD, O là giao điểm hai đường chéo. Vẽ đường thẳng qua B song song AC, vẽ đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau tại K.
a) Tứ giác OBKC là hình gì? Vì sao?
b) Chứng minh: AB = OK.
c) Tìm điều kiện của tứ giác ABCD để tứ giác OBKC là hình vuông.
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC;
b) AH2 = BH . HC;
c) AB . AC = AH . BC;
d) AC2 = CH . BC.
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC;
b) AC2 = CH . BC;
c) \(\frac{1}{{{\rm{A}}{{\rm{H}}^2}}} = \frac{1}{{{\rm{A}}{{\rm{B}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{C}}^2}}}\).
Cho tam giác ABC vuông tại A. Điểm M thuộc cạnh BC. Từ M vẽ các đường thẳng vuông góc với cạnh AB ở D và với cạnh AC ở E.
a) Chứng minh AM = DE
b) Gọi I là điểm đối xứng của D qua A và K là điểm đối xứng của E qua M. Chứng minh rằng các đoạn thẳng IK, DE, AM đồng quy tại trung điểm O của mỗi đoạn
c) Gọi AH là đường cao của tam giác ABC (H thuộc BC). Tính số đo góc DHE
d) Tìm vị trí của điểm M trên cạnh BC để tứ giác DIEK là hình thoi
Cho a, b, c là ba cạnh của một tam giác. Chứng minh rằng:
\(A = \frac{{\rm{a}}}{{{\rm{b + c - a}}}} + \frac{{\rm{b}}}{{{\rm{a + c - b}}}} + \frac{{\rm{c}}}{{{\rm{a + b - c}}}} \ge 3\).
Ông Khôi sở hữu một mảnh đất hình chữ nhật có chu vi là 100 m. Ông ta định bán mảnh đất đó với giá thị trường là 15 triệu đồng cho một mét vuông. Hãy xác định giá tiền của mảnh đất đó biết rằng chiều dài mảnh đất gấp bốn lần chiều rộng?
Một miếng đất hình chữ nhật có chu vi 100m. Tính chiều dài và chiều rộng của miếng đất, biết rằng 5 lần chiều rộng hơn 2 lần chiều dài 40m.
Cho tam giác ABC. Tìm điểm M thỏa mãn điều kiện: \(\overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} = \overrightarrow 0 \)
Tìm tọa độ điểm M thỏa mãn: \(\overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} = \overrightarrow 0 \)
M(2; 2);
M(– 2 ; – 1);
M(– 1; – 2);
M(– 2; – 2).
Chứng minh sin 3x = 3sin x – 4sin3x, cos 3x = 4cos3x – 3cos x
So sánh giá trị của biểu thức A và B biết
\(A = \overline {a,65} + \overline {4,bc} \); \(B = \overline {a,b} + 3,5 + \overline {1,2c} \).
Tìm số hạng không chứa x trong khai triển của nhị thức:\({\left( {x + \frac{1}{{{x^4}}}} \right)^{10}}\)
Số hạng không chứa x trong khai triển của \({\left( {x\sqrt x + \frac{1}{{{x^4}}}} \right)^n}\) với x > 0, nếu biết rằng \({\rm{C}}_n^2 - {\rm{C}}_n^1 = 44\)
165;
238 ;
485;
525.
Cho tứ giác ABCD có O là giao điểm hai điểm hai đường chéo và diện tích tam giác AOB bằng 4, diện tích tam giác COD bằng 9. Tìm giá trị nhỏ nhất của diện tích tứ giác ABCD.
Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.
a) Chứng minh OM = OP và tam giác NMP cân
b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I
c) Chứng minh AM . BN = R2
d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.
Cho tứ giác ABCD. Tìm M nằm trong ABCD sao cho tổng các khoảng cách từ M đến các đỉnh tứ giác nhỏ nhất.
Giải phương trình: x5 = x4 + x3 + x2 + x +2
Phân tích đa thức sau thành nhân tử:
x5 – x4 – x3 – x2 – x – 2
Phân tích đa thức sau thành nhân tử bằng nhiều cách: x3 – 7x – 6.
Chứng minh hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.
Phân tích đa thức thành nhân tử:
a) 5a – 10ax – 15a.
b) – 2a2b – 4ab2 – 6ab.
c) 3a2x – 6a2y + 12a.
Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian?
Cho đường tròn tâm O, đường kính AB và điểm C thuộc đường tròn sao cho AC > BC. Qua O vẽ đường thẳng vuông góc với dây AC ở H. Kẻ tiếp tuyến tại A của đường tròn cắt tia OH ở D. BD cắt đường tròn tâm O ở E.
a) Chứng minh HA = HC và \(\widehat {DCO} = 90^\circ \)
b) Chứng minh DH . DO = DE . DB
c) Trên tia đối của EA lấy F sao cho E là trung điểm AF. Từ F vẽ đường thẳng vuông góc AD ở K. KF cắt BC ở M. Chứng minh MK = MF.
Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:
a) Ít nhất 2 bóng tốt.
b) Ít nhất 1 bóng tốt.
Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Tính xác suất để trong 3 bóng có 1 bóng hỏng.
\(\frac{{11}}{{50}}\).
\(\frac{{13}}{{112}}\).
\(\frac{{28}}{{55}}\).
\(\frac{5}{6}\).
Tìm m để phương trình 2x2 + (m + 1)x + m – 8 = 0 có nghiệm.
Tìm tất cả các cặp số (x, y) thỏa mãn:
\(5x - 2\sqrt x \left( {y + 2} \right) + {y^2} + 1 = 0\).
Đồ thị hàm số y=x3–4x+3 cắt trục hoành tại điểm có hoành độ bằng?
Đồ thị hàm số y=x4 –x3–2cắt trục hoành tại bao nhiêu điểm?
1
2
0
4.
Một người nông dân mua một con bò giá 10 triệu, rồi bán đi với giá 15 triệu, sau đó mua lại giá 20 triệu rồi lại bán đi với giá 17 triệu. Người bán bò lãi bao nhiêu?
Trong mặt phẳng tọa độ Oxy cho các điểm A(– 1; 2), B(2; 3), C(0; 2). Xác định tọa độ điểm H là hình chiếu vuông góc của A lên BC. Tính diện tích tam giác ABC.
Cho A(3; 2), B(2; 0), C(5; 0)
a) Tìm tọa độ hình chiếu H của A trên đường thẳng BC.
b) Gọi I là trung điểm của AC. Tìm điểm M trên cạnh BC sao cho MA + MI nhỏ nhất.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x–5y+3=0và vectơ \(\overrightarrow v = \left( {2;3} \right)\). Hãy viết phương trình đường thẳng d’ là ảnh của d qua phép tịnh tiến theo vectơ \(\overrightarrow v \).
Trong mặt phẳng Oxy, viết phương trình đường thẳng △’ là ảnh của đường thẳng △: x + 2y – 1 =0 qua phép tịnh tiến theo vectơ \(\overrightarrow v \) =(1;– 1)
△’: x + 2y + 2 =0
△’: x + 2y – 3 =0
△’: x + 2y + 1 =0
△’: x + 2y =0








