5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 14)
60 câu hỏi
Cho tam giác ABC vuông tại A có . Gọi M và N lần lượt là trung điểm của BC và AC.
a) Tính góc .NMC.
b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.
c) Lấy D là điểm đối xứng với E qua BC. Tứ giác ACDB là hình gì? Tại sao?
d) Tam giác ABC có điều kiện gì thì tứ giác AECM là hình vuông?
Tìm a để hai đường thẳng (d1): y = (a – 1)x + 1 và (d2): y = (3 – a)x + 2 cắt nhau tại 1 điểm trên trục hoành.
Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.
Trong phép tính 121,23 : 14 và có thương là 8,65 vậy số dư là bao nhiêu?
13;
1,3;
0,13;
0,013.
Tìm số dư của phép chia 121,23 : 14 biết thương lấy đến hai chữ số ở phần thập phân.
Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).
Cho tam giác ABC vuông tại A (AB < AC) có D và E lần lượt là trung điểm của các cạnh AC và BC. Vẽ EF vuông góc với AB tại F.
a) Chứng minh rằng DE //AB và tứ giác ADEF là hình chữ nhật.
b) Trên tia đối của tia DE lấy điểm G sao cho DG = DE. Chứng minh tứ giác AECG là hình thoi.
c) Gọi O là giao điểm của AE và DF. Chứng minh rằng ba điểm B, O, G thẳng hàng.
d) Vẽ EH vuông góc với AG tại H. Chứng minh rằng tam giác DHF vuông.
Tính m để 3 điểm thẳng hàng:
a) A(2; 5), B(3; 7), C(2m + 1; m);
b) A(2m; ‒5), B(0; m), C(2; 3);
c) A(3; 7), B(m2; m), C(‒1; ‒1).
Tìm m để ba điểm A(2; ‒1), B(1; 1), C(3; m +1) thẳng hàng.
Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).
a) Giải phương trình khi m = 0.
b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).
Phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm phân biệt x1, x2 khác 0 khi nào?
Một can nước (tính cả vỏ can) nặng 12 kg. Sau đó người ta đổ bớt \(\frac{1}{3}\) số nước ra ngoài. Biết rằng can rỗng nặng 600 g. Hỏi sau khi đổ bớt nước ra ngoài, can nước cân nặng bao nhiêu?
Một can nước (tính cả vỏ can) nặng 12kg. Sau đó người ta đổ bớt \(\frac{1}{3}\) số nước ra ngoài. Biết rằng can rỗng nặng 600g. Cân nặng của can nước còn lại là bao nhiêu?
8kg;
8,2kg;
820dag;
800dag.
Trong mặt phẳng tọa độ Oxy, cho vectơ \(\overrightarrow a = \left( {9;3} \right)\). Vectơ nào sau đây không vuông góc với vectơ \(\overrightarrow a \)?
\({\overrightarrow v _1} = \left( {1; - 3} \right)\);
\({\overrightarrow v _2} = \left( {2; - 6} \right)\);
\({\overrightarrow v _3} = \left( {1;3} \right)\);
\({\overrightarrow v _4} = \left( { - 1;3} \right)\)
Trong mặt phẳng Oxy, với giá trị nào của m thì đường thẳng D1: (2m – 1)x + my – 10 = 0 vuông góc với đường thẳng D2: 3x + 2y + 6 = 0?
m = 0;
m ∈∅;
m = 2;
\(m = \frac{3}{8}\).
Viết các ước của 58.
Tìm x biết \(\left| {x + \frac{1}{3}} \right| - 4 = - 1\).
Tìm số hữu tỉ x, biết:
a) \(\left| {x + \frac{1}{3}} \right| - 4 = - 1\).
b) \(1\frac{3}{4}x + 1\frac{1}{2} = - \frac{4}{5}\).
Cho tam giác ABC có G là trọng tâm, I là trung điểm của đoạn thẳng BC. Đẳng thức nào sau đây là đúng?
\[\overrightarrow {GA} = 2\overrightarrow {GI} \];
\(\overrightarrow {IG} = \frac{{ - 1}}{3}\overrightarrow {IA} \);
\[\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GI} \];
\[\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} \].
Cho nửa đường tròn tâm O có đường kính AB, Ax là tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn nằm cùng phía đối với AB), C là một điểm thuộc nửa đường tròn, H là hình chiếu của C trên AB. Đường thẳng qua O và vuông góc với AC cắt Ax tại M. Gọi I là giao điểm của MB và CH. Chứng minh rằng CI = IH.
Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C khác A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB, MB cắt (O) tại Q và cắt CH tại N.
a) Chứng minh MA2 = MQ.MB.
b) MO cắt AC tại I. Chứng minh tứ giác AIQM nội tiếp.
c) Chứng minh: IN vuông góc CH.
Cho tam giác ABC có AB = a, AC = 2a. Gọi D là trung điểm AC, M là điểm thỏa mãn \(\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \). Chứng minh: BD vuông góc AM.
Cho 3 số dương x, y, x thỏa mãn x + y + z = 3.
Tìm giá trị nhỏ nhất của \(P = \frac{1}{{yz}} + \frac{1}{{xz}}\).
Cho nửa đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.
a) Chứng minh: CD = AC + BD.
b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. Chứng minh: AF.AB = KE.EB.
c) EF cắt CB tại I. Chứng minh , suy ra FE là tia phân giác của góc CFD.
d) EA cắt CF tại M, EB cắt DF tại N. Chứng minh: M, I, N thẳng hàng.
Cho nửa đường tròn (O), đường kính AB, vẽ các tiếp tuyến Ax, By của nửa đường tròn (O). Từ điểm M trên nửa đường tròn (M khác A, B) vẽ tiếp tuyến thứ ba của nửa đường tròn (O), cắt Ax ở C và cắt By ở D. Gọi N là giao điểm của BC và AD. Chứng minh rằng:
a) \(\frac{{CN}}{{AC}} = \frac{{NB}}{{BD}}\).
b) MN ⊥ AB.
c) \[\widehat {COD} = 90^\circ \].
Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.
c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.
Cho 6 điểm A, B, C, D, E, F. Hãy chứng minh các đẳng thức sau bằng nhiều cách khác nhau:
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DE} = \overrightarrow {AE} \);
b) \(\overrightarrow {AB} - \overrightarrow {AC} + \overrightarrow {DE} - \overrightarrow {DF} = \overrightarrow {FB} + \overrightarrow {CE} \).
Hình thoi ABCD có diện tích 20 cm2 và đường chéo AC bằng 10 cm. Tính độ dài đường chéo BD.
Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).
Giải phương trình \({x^2} - 1 = 2\sqrt {2x + 1} \).
Cho tam giác ABC cân tại đỉnh A. Gọi H là trung điểm của BC, D là hình chiếu của H lên AC, M là trung điểm của HD. Chứng minh rằng: AM ⊥ DB.
Cho tam giác ABC nhọn, vẽ đường tròn \(\left( {O;\frac{1}{2}BC} \right)\) cắt các cạnh AB, AC theo thứ tự tại D và E.
a) Chứng minh rằng: CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Cho hai hàm số bậc nhất có đồ thị là (D): y = (5m – 2)x – 3 và (D'): y = –x + 3 – 2m. Tìm m để (D) và (D') cắt nhau tại 1 điểm trên trục hoành.
Tìm giá trị của m để hai đồ thị hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại 1 điểm trên trục hoành.
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh: AH.BC = AB.AC.
b) Gọi M là điểm nằm ở giữa B và C. Kẻ MN vuông với AB, MP vuông góc với AC (N thuộc AB, P thuộc AC ) tứ giác ANMP là hình gì? Vì sao?
c) Tính số đo góc NHP?
d) Tìm vị trí M trên BC để NP có độ dài ngắn nhất?
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB (P ∈ AB), MQ vuông góc với AC (Q ∈ AC). Gọi R là điểm đối xứng M qua P.
a) Tứ giác AQMP là hình gì? Vì sao?
b) Tứ giác AMBR là hình gì? Vì sao?
c) Để tứ giác AQMP là hình vuông thì tam giác ABC cần thêm điều kiện gì?
Tích của hai số là 625. Nếu gấp thừa số thứ nhất lên 2 lần và gấp thừa số thứ hai lên 3 lần thì tích mới là bao nhiêu?
Cho hàm số bậc nhất \(y = \frac{3}{4}x + 3\) có đồ thị là đường thẳng (d).
a) Vẽ (d) trên mặt phẳng toạ độ Oxy.
b) Tính khoảng cách từ gốc toạ độ O đến đường thẳng (d).
Tìm tập xác định của hàm số \(y = \frac{{2x - 1}}{{\sqrt x - 2}}\).
Tìm tập xác định của hàm số \(y = \frac{{2x - 1}}{{\sqrt {x - 2} }}\).
Không giải phương trình, tìm các nghiệm số của phương trình x3 – 15x2 + 71x – 105 = 0, biết rằng các nghiệm số phân biệt và tạo thành một cấp số cộng.
Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).
Cho tam giác ABC vuông tại A, đường cao AH. Biết diện tích các tam giác ABH và ACH lần lượt là 54 cm2 và 96 cm2. Độ dài BC là
15 cm;
25 cm;
35 cm;
45 cm.
Cho tam giác ABC vuông tại A, đường cao AH. Biết diện tích các tam giác ABH và ACH lần lượt là 54 cm2 và 96 cm2. Tính AB, AC, BC.
Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC và BD. Đường thẳng EF lần lượt cắt AB, CD tại H, K. Chứng minh rằng \(\widehat {KHB} = \widehat {HKC}\).
Cho tứ giác ABCD có AB // CD và CD > AB. Gọi E, F lần lượt là trung điểm của AC và BD. Chứng minh rằng \(EF = \frac{{CD - AB}}{2}\).
Trong một ngày trường A cần làm 120 cái lồng đèn ông trang trí trường nhân dịp Trung Thu. Biết rằng mỗi bạn nam làm được 2 cái và mỗi bạn nữ làm được 3 cái trong một ngày. Gọi x là số bạn nam, y là số bạn nữ được trường huy động làm.
a) Viết hàm số biểu diễn y theo x.
b) Nếu trường chỉ có thể huy động 15 bạn nam có khả năng làm thì cần huy động thêm bao nhiêu bạn nữ?
Cho phương trình x2 – (m – 1)x – m = 0, trong đó m là tham số, x là ẩn số. Tìm m để phương trình có hai nghiệm phân biệt đều nhỏ hơn 1.
Tìm m để ba đường thẳng đồng quy.
Cho ba đường thẳng y = 2x + 1 (d1); y = x – 1 (d2) và y = (m + 1)x – 2. Tìm điều kiện của tham số m để ba đường thẳng đồng quy.
Cho ba đường thẳng y = x + 6 (d1); y = 3x + 7 (d2) và y = (2 – m)x + 1 (d3). Tìm m để (d1), (d2) và (d3) đồng quy.
Nêu công thức tính số đo góc giữa hai vectơ.
Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) trong mỗi trường hợp sau:
a) \(\overrightarrow a = \left( { - 3;1} \right),\overrightarrow b = \left( {2;6} \right);\)
b) \(\overrightarrow a = \left( {3;1} \right),\overrightarrow b = \left( {2;4} \right);\)
c) \(\overrightarrow a = \left( { - \sqrt 2 ;1} \right),\overrightarrow b = \left( {2; - \sqrt 2 } \right).\)
Cho tập X = {1;2;3;....;8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là
\(\frac{{C_8^2C_6^2C_4^2}}{{8!}}\);
\(\frac{{4!.4!}}{{8!}}\);
\(\frac{{384}}{{8!}}\);
\(\frac{{A_8^2A_6^2A_4^2}}{{8!}}\).
Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 lập các số tự nhiên có tám chữ số đôi một khác nhau. Lấy ngẫu nhiên một số vừa lập. Xác suất để lấy được số chia hết cho 1111 là:
\(\frac{8}{{35}}\);
\(\frac{1}{{2520}}\);
\(\frac{1}{{630}}\);
\(\frac{1}{{105}}\).
Chứng minh rằng a3b – ab3 chia hết cho 6 với mọi số nguyên a và b.
Giải hệ phương trình \(\left\{ \begin{array}{l}{\left( {2xy - 1} \right)^2} + 4{x^2} = 5{y^2}\\2x\left( {x - {y^2}} \right) = {y^2} - y\end{array} \right.\).
Cho a, b > 0 thỏa mãn ab = 1. Chứng minh \(\frac{1}{a} + \frac{1}{b} + \frac{2}{{a + b}} \ge 3\).
Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AB và CD sao cho AB = 3AM và CD = 2CN. Biểu diễn vectơ \(\overrightarrow {AN} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).








