Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 6)
14 câu hỏi
a) Tìm điều kiện xác định của biểu thức P.
b) Rút gọn biểu thức P.
c) Tính giá trị của biểu thức \(P\) biết \(\left| {x + 2} \right| = 1\).
Thanh long là một loại cây chịu hạn, không kén đất, rất thích hợp với điều kiện khí hậu và thổ nhưỡng của tỉnh Bình Thuận. Giá bán 1 kg thanh long ruột đỏ loại I là \[32{\rm{ }}000\] đồng.
a) Viết công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I. Hỏi \[y\] có phải là hàm số của \[x\] không? Vì sao?b) Tính số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I.
Tính tuổi của hai người, biết rằng cách đây 10 năm tuổi người thứ nhất gấp 3 lần tuổi của người thứ hai và sau đây hai năm, tuổi người thứ hai sẽ bằng một nửa tuổi của người thứ nhất.
a) Hỏi có bao nhiêu kết quả đồng khả năng?
b) Tính xác suất của biến cố E: “Lấy được chiếc bút màu tím”;
c) Tính xác suất của biến cố F: “Lấy được chiếc bút màu cam hoặc màu xanh”.
a) Chứng minh: .
b) Chứng minh: \(AF \cdot AB = AE \cdot AC\).
c) Đường thẳng qua \[B\] và song song với \[EF\] cắt \[AC\] tại \[M.\] Gọi \[I\] là trung điểm của \[BM,{\rm{ }}D\] là giao điểm của \[EI\] và \[BC.\] Chứng minh ba điểm \[A,{\rm{ }}H,{\rm{ }}D\] thẳng hàng.
Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\]đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?
Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng \(10\,\,{\rm{cm}}\), trung đoạn bằng \(13\,\,{\rm{cm}}\). Tính chiều cao của hộp quà.
(0,5 điểm)Một lô hàng gồm 10 sản phẩm loại A và 7 sản phẩm loại B. Lấy ngẫu nhiên 2 sản phẩm. Tính xác suất của biến cố E: “2 sản phẩm lấy ra có ít nhất một sản phẩm loại B”.








