2048.vn

Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án - Đề 08
Quiz

Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án - Đề 08

A
Admin
ToánLớp 125 lượt thi
22 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Phát biểu nào sau đây là đúng A. Hàm số đã cho đồng biến (ảnh 1)

Phát biểu nào sau đây là đúng?

Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {1; + \infty } \right)\).

Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

Hàm số đã cho đồng biến trên khoảng \[\left( { - 1;\,1} \right)\].

Hàm số đã cho nghịch biến trên khoảng \[\left( { - 3;\,1} \right)\].

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại A. x = -2 (ảnh 1)

Hàm số đã cho đạt cực đại tại

\[x = - 2\].

\[x = 2\].

\[x = 1\].

\[x = - 1\].

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có đồ thị hàm số như hình vẽ dưới đây.

Cho hàm số y = f(x) liên tục trên đoạn [-1;3] (ảnh 1)

Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\,2} \right]\) bằng bao nhiêu?

\(3\).

\[2\].

\[ - 2\].

\(1\).

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Phát biểu nào dưới đây là đúng A. Đồ thị hàm số  (ảnh 1)

Phát biểu nào dưới đây là đúng?

Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = 2\), tiệm cận ngang là đường thẳng \(y = - 1\).

Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 2\).

Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 2\), tiệm cận ngang là đường thẳng \(y = - 1\).

Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = - 2\).

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Chọn khẳng định sai. Với hai vectơ bất kì \(\overrightarrow a ,\,\overrightarrow b \) và hai số thực \(h,\,k\), ta có:

\(k\left( {\overrightarrow a + \overrightarrow b } \right) = k\overrightarrow a + k\overrightarrow b \).

\(k\left( {\overrightarrow a - \overrightarrow b } \right) = k\overrightarrow a - k\overrightarrow b \).

\(\left( {h + k} \right)\overrightarrow a = h\overrightarrow a + k\overrightarrow a \).

\(h\left( {k\overrightarrow a } \right) = {h^k}\overrightarrow a \).

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ \[Oxyz\], cho điểm \(M\left( {3; - 4;2} \right)\). Tọa độ của vectơ \(\overrightarrow {OM} \) là:

\(\left( {3; - 4;2} \right)\).

\(\left( { - 3; - 4;2} \right)\).

\(\left( { - 4;3;2} \right)\).

\(\left( {2; - 4;3} \right)\).

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ \[Oxyz\], cho vectơ \(\overrightarrow u = 4\overrightarrow i - \overrightarrow j + 6\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow u \) là:

\(\left( {4;1;6} \right)\).

\(\left( { - 4; - 1;6} \right)\).

\(\left( {4; - 1;6} \right)\).

\(\left( {6; - 1;4} \right)\).

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\). Khẳng định nào sau đây là đúng?

Hàm số đã cho đạt cực đại tại \(x = 3\).

Hàm số đã cho có hai cực trị thỏa mãn .

Hàm số đã cho đạt cực tiểu tại \(x = - 1\).

Giá trị cực tiểu của hàm số đã cho bằng \( - 2\).

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \(y = x\ln x\). Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;\,e} \right]\) bằng:

\(0\).

\(1\).

\(e\).

\(e + 1\).

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - 9x + 3}}{{x + 1}}\) là đường thẳng:

\(y = 2x - 9\).

\(y = 2x - 11\).

\(y = 2x + 11\).

\(y = 2x + 9\).

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Đường cong trong hình dưới đây là đồ thị của hàm số nào trong các hàm số ở các phương án sau:

Đường cong trong hình dưới đây là đồ thị (ảnh 1)

\(y = \frac{{{x^2} + 2x + 2}}{{ - x - 1}}\).

\(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

\(y = \frac{{{x^2} - 2x + 2}}{{x - 1}}\).

\(y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\).

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian, cho hai vectơ \(\overrightarrow a ,\,\overrightarrow b \) tạo với nhau một góc \(60^\circ \)\(\left| {\overrightarrow a } \right| = 2\), \(\left| {\overrightarrow b } \right| = 5\). Khi đó, \(\overrightarrow a \cdot \overrightarrow b \) bằng:

\(5\sqrt 3 \).

\( - 5\).

\(10\).

\(5\).

Xem đáp án
13. Tự luận
1 điểmKhông giới hạn

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\)có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên các khoảng (- vô cùng (ảnh 1)

a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {0;1} \right)\).

b) Hàm số đã cho có \(3\) điểm cực trị.

c) Trên đoạn \(\left[ { - 1;\,1} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(3\).

d) Phương trình \(f\left( x \right) + 3 = 0\) có 4 nghiệm.

Xem đáp án
14. Tự luận
1 điểmKhông giới hạn

Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].

b) Hàm số đã cho đạt cực đại tại \(x = 4\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 1\).

d) \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.

Xem đáp án
15. Tự luận
1 điểmKhông giới hạn

Cho hình chóp \(S.ABC\)\(SA = SB = SC = AB = AC = 1\)\(BC = \sqrt 2 \).

Cho hình chóp S.ABC có SA = SB = SC = AB = AC = 1 (ảnh 1)

a)\(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SC} \).

b)\(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = \sqrt 2 \).

c)\(\overrightarrow {SC} \cdot \overrightarrow {AB} = \frac{1}{2}\).

d) \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{1}{2}\).

Xem đáp án
16. Tự luận
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\)\(A'\left( {1;\,0 & ;\,1} \right)\), \(B'\left( {3;1;\,3} \right)\), \(D'\left( {1;\, - 1;1} \right)\), \(C\left( {3;\,5;\, - 5} \right)\).

a) Tọa độ của vectơ \(\overrightarrow {A'D'} \)\(\left( {0; - 1;0} \right)\).

b) Gọi tọa độ của điểm \(B\)\(\left( {{x_B};\,{y_B};{z_B}} \right)\), ta có tọa độ của vectơ \(\overrightarrow {BC} \) là:

\(\left( {{x_B} - 3;{y_B} - 5;{z_B} + 5} \right)\).

c) Tọa độ của điểm \(B\)\(\left( {3;6; - 5} \right)\).

d) Tọa độ của vectơ tổng \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {DD'} \)\(\left( { - 2;\, - 7;6} \right)\).

Xem đáp án
17. Tự luận
1 điểmKhông giới hạn

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {m + 1} \right)x + 2\) có hai điểm cực trị?

Xem đáp án
18. Tự luận
1 điểmKhông giới hạn

Người ta giới thiệu một loại thuốc để kích thích sự sinh sản của một loại vi khuẩn. Sau \(t\) phút, số vi khuẩn được xác định theo công thức: \(f\left( t \right) = - {t^3} + 30{t^2} + 1\,000\) với \(0 \le t \le 30\). Hỏi sau bao nhiêu phút thì số vi khuẩn lớn nhất?

Xem đáp án
19. Tự luận
1 điểmKhông giới hạn

Cho tứ diện \(ABCD\). Gọi \(E,\,F\) là các điểm lần lượt thuộc các cạnh \(AB,\,CD\) sao cho \(AE = \frac{1}{3}AB,\,CF = \frac{1}{3}CD\). Khi biểu diễn vectơ \(\overrightarrow {EF} \) theo ba vectơ \(\overrightarrow {AB} ,\,\overrightarrow {AD} ,\,\overrightarrow {BC} \) ta được: \(\overrightarrow {EF} = \frac{a}{b}\overrightarrow {AB} + \frac{c}{d}\overrightarrow {AD} + \frac{r}{s}\overrightarrow {BC} \) (với \(\frac{a}{b},\,\frac{c}{d},\,\frac{r}{s}\) là các phân số tối giản và \(a,b,c,d,r,s \in \mathbb{Z}\)). Ta tính được giá trị của biểu thức \(M = \frac{a}{b} + \frac{c}{d} + \frac{r}{s}\) bằng \(\frac{x}{y}\) (với \(\frac{x}{y}\) là phân số tối giản và \(x,\,y \in \mathbb{Z}\)). Khi đó, giá trị của biểu thức \(P = x + y\) bằng bao nhiêu?

Xem đáp án
20. Tự luận
1 điểmKhông giới hạn

Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.

Người ta kéo vật nặng bằng một lực vecto F (ảnh 1)

Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?

Xem đáp án
21. Tự luận
1 điểmKhông giới hạn

Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá \(30\,000\) đồng một chiếc và mỗi tháng cơ sở bán được trung bình \(3\,000\) chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhuận tốt hơn. Sau khi tham khảo thị trường, người quản lí thấy rằng nếu từ mức giá \(30\,000\) đồng mà cứ tăng thêm \(1\,000\) đồng thì mỗi tháng sẽ bán ít hơn \(100\) chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là \(18\,000\) đồng. Hỏi cơ sở sản xuất phải bán với giá mới là bao nhiêu nghìn đồng để đạt lợi nhuận lớn nhất?

Xem đáp án
22. Tự luận
1 điểmKhông giới hạn

Một chiếc đèn chùm treo có khối lượng \(m = 3\) kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích \(SA,\,SB,\,SC,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 60^\circ \) như hình dưới.

Một chiếc đèn chùm treo có khối lượng (ảnh 1)

Độ lớn của lực căng cho mỗi sợi xích bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)? Biết rằng gia tốc rơi tự do có độ lớn 9,8 m/s2.

Xem đáp án
© All rights reserved VietJack