Bộ 5 đề thi giữa kì 1 Toán 9 Kết nối tri thức cấu trúc mới có đáp án - Đề 2
21 câu hỏi
Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn (3,0 điểm)
Phương trình nào sau đây là phương trình bậc nhất hai ẩn?
\[2{x^2} + 2 = 0.\]
\[3y - 1 = 5y\left( {y - 2} \right).\]
\(2x + \frac{y}{2} - 1 = 0.\)
\[\frac{3}{x} + y = 0.\]
Phương trình nào dưới đây nhận cặp số \(\left( { - 2;\,\,4} \right)\) làm nghiệm?
\[x - 2y = 0.\]
\[2x + y = 0.\]
\[x - y = 2.\]
\[x + 2y + 1 = 0.\]
Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6\end{array} \right.?\]
\[\left( {6;\,\, - 6} \right)\].
\[\left( {6;\,\,6} \right)\].
\[\left( { - \frac{{354}}{{13}};\,\,\frac{{402}}{{13}}} \right)\].
\[\left( {\frac{{354}}{{13}};\,\,\frac{{402}}{{13}}} \right)\].
Phương trình \(0x + 7y = 14\) có nghiệm tổng quát là
\(\left( {x;\,\,2} \right)\) với \(x \in \mathbb{R}\).
\(\left( {2;\,\,y} \right)\) với \(y \in \mathbb{R}\).
\(\left( {x;\,\,0} \right)\) với \(x \in \mathbb{R}\).
\(\left( {0;\,\,y} \right)\) với \(y \in \mathbb{R}\).
Mẫu thức chung của phương trình \[\frac{1}{{x - 1}} + \frac{3}{{x + 1}} = 0\] là
\(x\left( {x - 1} \right)\left( {x + 1} \right)\).
\({\left( {x - 1} \right)^2}.\)
\({\left( {x + 1} \right)^2}\).
\(\left( {x - 1} \right)\left( {x + 1} \right).\)
Phương trình \[2x\left( {3x - 1} \right) + 6x - 2 = 0\] có nghiệm là
\[x = \frac{1}{3}.\]
\[x = \frac{1}{3}\] và \[x = - 1\].
\[x = - 1\].
\(x = 1\) và \(x = - \frac{1}{3}.\)
Nếu \(a,\,\,b,\,\,c\) là ba số mà \(a < b\) và \(ac > bc\) thì \(c\) là
số âm.
số dương.
số 0.
số tùy ý.
Biển báo giao thông R.306 (hình bên báo tốc độ tối thiểu cho các xe cơ giới. Biển có hiệu lực bắt buộc các loại xe cơ giới vận hành với tốc độ không nhỏ hơn trị số ghi trên biển trong điều kiện giao thông thuận lợi và an toàn. Nếu một ô tô đi trên đường đó với tốc độ \(a\,\,\left( {{\rm{km/h}}} \right)\) thì \(a\) phải thỏa mãn điều kiện nào sau đây là đúng nhất?
\[a \le 60.\]
\[a > 60.\]
\[a \ge 60.\]
\[a = 60.\]
Cho tam giác \(MNP\) vuông tại \(M\). Khi đó \(\tan \widehat {MNP}\) bằng
\(\frac{{MN}}{{NP}}\).
\(\frac{{MP}}{{NP}}\).
\(\frac{{MN}}{{MP}}\).
\(\frac{{MP}}{{MN}}\).
Tam giác \[ABC\] vuông tại \[A\]. Khẳng định nào sau đây đúng?
\[AC = AB.\tan B.\]
\[AB = BC.\tan B.\]
\[AC = BC.\tan B.\]
\[AB = AC.\tan B.\]
Cho góc \(\alpha \) thỏa mãn \(0^\circ < \alpha < 90^\circ \). Biết \(\sin \alpha = \frac{3}{5}\). Giá trị của \(\cos \left( {90^\circ - \alpha } \right)\) bằng
\(\frac{5}{4}\).
\(\frac{4}{5}\).
\(\frac{5}{3}\).
\(\frac{3}{5}\).
Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 10\), \(AC = 6\). Tỉ số lượng giác \(\tan C\) có kết quả gần nhất với giá trị nào dưới đây?
\(1,33.\)
\(0,88.\)
\(0,68.\)
\(0,75.\)
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Cho phương trình \[2x - 5y = 1{\rm{ }}\left( * \right)\].
a) Cặp số \[\left( { - 2\,;\,\,1} \right)\] là nghiệm của phương trình \[\left( * \right)\].
b) Phương trình \[\left( * \right)\] là phương trình bậc nhất hai ẩn có vô số nghiệm.
c) Hệ số \[a;\,\,b;\,\,c\] của phương trình \[\left( * \right)\] lần lượt là \[2\,;\,\, - 5\,;\,\,1.\]
d) Tập hợp các điểm có tọa độ \(\left( {x\,;\,\,y} \right)\) thỏa mãn phương trình \[\left( * \right)\] là đường thẳng \[y = 2x - 1.\]
Cho ba số \(a,\,\,b,\,\,c\) và \(a \le b.\)
a) \(a + c \le b + c.\) b) \(ac \ge bc\) với \(c > 0.\)
c) \( - \frac{a}{c} \ge - \frac{b}{c}\) với \(c < 0.\) d) \({a^2} \le {b^2}.\)
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)
Gọi \(\left( {x;\,\,y} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}2\left( {x + y} \right) + 3\left( {x - y} \right) = 4\\\left( {x + y} \right) + 2\left( {x - y} \right) = 5\end{array} \right..\] Bạn An sau khi giải hệ phương trình thì viết được hệ thức \(y = ax.\) Tìm \(a.\)
Phương trình \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}\) có nghiệm là bao nhiêu?
Tìm giá trị nhỏ nhất của \(x\) thỏa mãn bất phương trình \(1 + \frac{{x + 4}}{5} \le x - \frac{{x + 3}}{3}\).
Cho tam giác \[ABC\] vuông tại \[C\] có \[BC = 1,2\,\,{\rm{cm}}\,{\rm{, }}AC = 0,9\,\,{\rm{cm}}.\] Tính \[\sin B + \cos B.\]
B. TỰ LUẬN (3,0 điểm)
(1,0 điểm)Giải bài toán sau bằng cách lập hệ phương trình:
Gen B có \(3\,\,600\) liên kết hydrogen và có hiệu giữa nucleotide loại \[T\] với loại nucleotide không bổ sung với nó là \(300\) nucleotide. Tính số nucleotide từng loại của gen B. Biết rằng, để tính số lượng nucleotide \[\left( {A,{\rm{ }}T,{\rm{ }}G,{\rm{ }}C} \right)\] trong phân tử DNA, ta áp dụng nguyên tắc bổ sung: “\[A\] liên kết với \[T\] bằng 2 liên kết hydrogen và \[G\] liên kết với \[C\] bằng 3 liên kết hydrogen” và \(\% A = \% T,\,\,\% G = \% C.\) Tổng số nucleotide trong gen:
\(N = A + T + G + C = 2A + 2G = 2T + 2C.\)
(1,5 điểm)
1) Cho tam giác \(ABC\) có \(BC = 16\,{\rm{cm}},\,\,\widehat {ABC} = 45^\circ ,\,\,\widehat {ACB} = 30^\circ .\) Gọi \(N\) là chân đường vuông góc kẻ từ \(A\) đến cạnh \(BC.\) Tính độ dài cạnh \(AN\) (làm tròn kết quả đến chữ số thập phân thứ hai).
2) Người ta cần lắp đặt một thiết bị chiếu sáng gắn trên tường cho một phòng triển lãm như hình vẽ. Thiết bị này có góc chiếu sáng là \(20^\circ \) và cần đặt cao hơn mặt đất là \(2,5\,\,{\rm{m}}.\) Người ta đặt thiết bị chiếu sáng này sát tường và được canh chỉnh sao cho trên mặt đất dải ánh sáng bắt đầu từ vị trí cách tường \(2\,\,{\rm{m}}\) (như hình vẽ). Tính độ dài vùng được chiếu sáng trên mặt đất (làm tròn kết quả đến chữ số thập phân thứ nhất).

(0,5 điểm) Cho tam giác đều \(ABC\) có cạnh bằng \(20{\rm{\;cm}}\). Người ta cắt ở ba góc của tấm nhôm đó ba tam giác (hình vẽ) để được hình chữ nhật \(MNPQ.\) Tìm độ dài đoạn \(MB\) để hình chữ nhật \(MNPQ\) có diện tích lớn nhất.









