20 CÂU HỎI
I. Nhận biết
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a = \left( { - 2;6;2} \right)\). Vectơ \(\frac{3}{2}\overrightarrow a \) có tọa độ là
\(\left( { - 6;9;6} \right).\)
\(\left( { - 3;9;3} \right).\)
\(\left( {6;9;6} \right).\)
\(\left( { - 3;6;3} \right).\)
Trong không gian \(Oxyz\), cho hai điểm \(M\left( {1; - 2;2} \right)\) và \(N\left( {1;0;4} \right)\). Tọa độ trung điểm của đoạn thẳng \(MN\) là
\(\left( {1; - 1;3} \right).\)
\(\left( {0;2;2} \right).\)
\(\left( {2; - 2;6} \right).\)
\(\left( {1;0;3} \right).\)
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow u = \left( {1; - 2;3} \right)\). Vectơ nào sau đây cùng phương với vectơ \(\overrightarrow u \) ?
\(\overrightarrow a = \left( {2;4;6} \right).\)
\(\overrightarrow b = \left( { - 3;6; - 9} \right).\)
\(\overrightarrow c = \left( {\frac{1}{2}; - 2;\frac{3}{2}} \right).\)
\(\overrightarrow d = \left( { - 1; - 2; - 3} \right).\)
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;2; - 5} \right)\), \(B\left( {1;2;4} \right)\), \(C\left( {2;5; - 2} \right)\). Tọa độ trọng tâm \(G\) của tam giác \(ABC\) là
\(\left( {6;9 - 3} \right).\)
\(\left( {2;3; - 1} \right).\)
\(\left( {2;3;1} \right).\)
\(\left( {6;9;3} \right).\)
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1;2;3} \right)\), \(\overrightarrow b = \left( {4;5;6} \right)\). Tọa độ vectơ \(\overrightarrow a + \overrightarrow b \) là
\(\left( {5;7;9} \right).\)
\(\left( {3;7;9} \right).\)
\(\left( {5;3;9} \right).\)
\(\left( {3;5;9} \right).\)
II. Thông hiểu
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;2;3} \right)\) và \(\overrightarrow v = \left( {4; - 5;6} \right)\). Vectơ \(2\overrightarrow u - 3\overrightarrow v \) cùng phương với vectơ nào?
\(\overrightarrow c = \left( {4; - 10;18} \right).\)
\(\overrightarrow c = \left( { - 10;19; - 12} \right).\)
\(\overrightarrow c = \left( { - 10; - 11; - 12} \right).\)
\(\overrightarrow c = \left( { - 4; - 10;18} \right).\)
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {0;2;1} \right)\) và \(B\left( {3; - 2;1} \right)\). Độ dài đoạn thẳng \(AB\) bằng
\(5.\)
\(3.\)
\(9.\)
\(25.\)
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {3;0;1} \right)\) và \(\overrightarrow c = \left( {1;1;0} \right)\). Tọa độ của vectơ \(\overrightarrow b \) thỏa mãn đẳng thức \(\overrightarrow b - \overrightarrow a + 2\overrightarrow c = \overrightarrow 0 \) là
\(\left( {5;3; - 9} \right).\)
\(\left( {1; - 2;1} \right)\)
\(\left( { - 3; - 7; - 9} \right).\)
\(\left( { - 1; - 2;1} \right)\)
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;1; - 1} \right)\), \(B\left( {1;2;0} \right)\), \(\left( {m;n;0} \right)\). Giá trị \(m,n\) sao cho ba điểm \(A,B,C\) thẳng hàng:
\(m = 1,n = 1.\)
\(m = 1,n = 2.\)
\(m = 2,n = 1.\)
\(m = 2,n = 2.\)
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( { - 1 - 1;0} \right)\) và \(\overrightarrow b = \left( {0; - 1;0} \right)\). Góc giữa hai vectơ này là:
\(60^\circ.\)
\(30^\circ.\)
\(45^\circ.\)
\(90^\circ.\)
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = \left( { - 2;1;2} \right)\). Tích vô hướng \(\left( {\overrightarrow a + \overrightarrow b } \right)\overrightarrow b \) bằng
\(12.\)
\(13.\)
\(11.\)
\(10.\)
Trong không gian \(Oxyz\), cho điểm \(G\left( {1; - 2;3} \right)\) và ba điểm \(A\left( {a;0;0} \right)\), \(B\left( {0;b;0} \right)\), \(C\left( {0;0;c} \right)\). Biết \(G\) là trọng tâm của của tam giác \(ABC\) thì \(a + b + c\) bằng
\(3.\)
\(9.\)
\(6.\)
\(0.\)
Trong không gian \(Oxyz\), cho ba điểm \(M\left( {2; - 3; - 1} \right)\), \(N\left( {0;3;1} \right)\), \(P\left( {1;m - 1;2} \right)\). Với giá trị nào của \(m\) thì tam giác \(MNP\) vuông tại \(N\)?
\(m = 2.\)
\(m = 3.\)
\(m = 4.\)
\(m = - 4.\)
Trong không gian \(Oxyz\), cho ba điểm \(A\left( { - 1; - 2;3} \right)\), \(B\left( {0;3;1} \right)\), \(C\left( {4;2;2} \right)\). Giá trị \(\cos \left( {\widehat {BAC}} \right)\) bằng
\(\frac{9}{{2\sqrt {35} }}.\)
\( - \frac{9}{{\sqrt {35} }}.\)
\( - \frac{9}{{2\sqrt {35} }}.\)
\(\frac{9}{{\sqrt {35} }}.\)
Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;3;5} \right)\), \(B\left( {1;1;3} \right)\), \(C\left( {4; - 2;3} \right)\).
Khi đó:
a) Tọa độ trung điểm \(BC\) là \(\left( {\frac{5}{2}; - \frac{1}{2};3} \right)\).
b) Độ dài đoạn thẳng \(BC\) là \(3\sqrt 2 \).
c) Côsin \(\widehat {BAC}\) bằng \(\frac{{7\sqrt {19} }}{{38}}\).
d) Gọi \(D\) là đỉnh thứ tư của hình bình hành \(ABCD\). Tọa độ hình chiếu của trọng tâm tam giác \(ABD\) lên mặt phẳng \(Oyz\) là \(\left( {2;0;0} \right)\).
Số mệnh đề đúng trong các mệnh đề trên là:
\(1.\)
\(2.\)
\(3.\)
\(4.\)
Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian \(Oxyz\), một đội gồm ba drone giao hàng \(A,B,C\) đang có tọa độ là \(A\left( {1;1;1} \right)\), \(B\left( {5;7;9} \right)\), \(C\left( {9;11;4} \right)\). Gọi \({d_1},{d_2},{d_3}\) lần lượt là khoảng cách của mỗi cặp drone giao hàng trên. Tính \({d_1} + {d_2} + {d_3}\). (Kết quả làm tròn đến hàng đơn vị).
\(31.\)
\(32.\)
\(25\).
\(5\)
Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \(A\left( {1;2; - 1} \right)\), \(B\left( {2; - 1;3} \right)\), \(C\left( { - 4;7;5} \right)\). Gọi \(D\left( {a;b;c} \right)\) là chân đường phân giác trong góc \(B\) của tam giác \(ABC\). Giá trị \(a + b + 2c\) bằng
\(4.\)
\(3.\)
\(\frac{{20}}{5}\).
\(5.\)
Trong không gian \(Oxyz\). Cho ba điểm \(A\left( { - 2;3;1} \right)\), \(B\left( {2;1;0} \right)\), \(C\left( { - 3; - 1;1} \right)\). Tìm tất cả các giá trị của tọa độ điểm \(D\) sao cho \(ABCD\) là hình thang có đáy \(AD\) và \({S_{ABCD}} = 3{S_{ABC}}\).
\(D\left( {8;7; - 1} \right).\)
\(\left[ \begin{array}{l}D\left( { - 8; - 7;1} \right)\\D\left( {12;1; - 3} \right)\end{array} \right..\)
\(\left[ \begin{array}{l}D\left( {8;7; - 1} \right)\\D\left( { - 12; - 1;3} \right)\end{array} \right..\)
\(\left( { - 12; - 1;3} \right).\)
Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. chiếc thứ hai mằm cách điểm xuất phát 1 km về phía bắc và 1,5 km về phía tây, đồng thời cách mặt đất 0,8 m. Chọn hệ trục \(Oxyz\) với O là gốc đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \[Oy\] hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilomet.
Khi đó:
a) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ nhất là \(\left( {2;1;0,5} \right)\).
b) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ hai là \(\left( { - 1,5; - 1;0,8} \right)\).
c) Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng \(\sqrt {21} \) km.
d) Khoảng cách hai chiếc khinh khí cầu là 3,92 km (Kết quả làm tròn đến hàng phần trăm).
Số khẳng định đúng trong các khẳng định trên là:
\(1.\)
\(2.\)
\(3.\)
\(4.\)
Trong không gian \(Oxyz\), cho hình thang \(ABCD\) vuông tại \(A\) và \(B\). Ba đỉnh \(A\left( {1;2;1} \right)\), \(B\left( {2;0; - 1} \right)\), \(C\left( {6;1;0} \right)\). Hình thang có diện tích bằng \(6\sqrt 2 \). Giả sử đỉnh \(D\left( {a;b;c} \right)\), tìm mệnh đề đúng.
\(a + b + c = 6.\)
\(a + b + c = 5.\)
\(a + b + c = 8.\)
\(a + b + c = 7.\)