2048.vn

Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 7
Quiz

Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 7

A
Admin
ToánLớp 87 lượt thi
5 câu hỏi
1. Tự luận
1 điểmKhông giới hạn

Thanh long là một loại cây chịu hạn, không kén đất, rất thích hợp với điều kiện khí hậu và thổ nhưỡng của tỉnh Bình Thuận. Giá bán 1 kg thanh long ruột đỏ loại I là \[32{\rm{ }}000\] đồng.

a) Viết công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I. Hỏi \[y\] có phải là hàm số của \[x\] không? Vì sao?

b) Tính số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I.

Thanh long là một loại cây chịu hạn, không kén đất, rất thích hợp với điều kiện khí hậu và thổ nhưỡng của tỉnh Bình Thuận. Giá bán 1 kg thanh long ruột đỏ loại I là \[32{\rm{ }}000\] đồng.  a) Viết công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I. Hỏi \[y\] có phải là hàm số của \[x\] không? Vì sao?  b) Tính số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I. (ảnh 1)

Xem đáp án
2. Tự luận
1 điểmKhông giới hạn

1. Giải các phương trình sau:

a) \[4x--5 = 2x + 1\];                                             

b) \(\frac{{x - 2}}{6} - \frac{x}{2} = \frac{{5 - 2x}}{3}\).

2. Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:

Tính tuổi của hai người, biết rằng cách đây 10 năm tuổi người thứ nhất gấp 3 lần tuổi của người thứ hai và sau đây hai năm, tuổi người thứ hai sẽ bằng một nửa tuổi của người thứ nhất.

Xem đáp án
3. Tự luận
1 điểmKhông giới hạn

Một túi đựng bút tô màu của bé Mai có 5 chiếc bút màu vàng, 3 chiếc bút màu cam, 4 chiếc bút màu xanh và 2 chiếc bút màu tím (các chiếc bút có cùng khối lượng và kích thước). Bé Mai lấy ngẫu nhiên một chiếc bút từ trong túi.

a) Hỏi có bao nhiêu kết quả đồng khả năng?

b) Tính xác suất của biến cố E: “Lấy được chiếc bút màu tím”;

c) Tính xác suất của biến cố F: “Lấy được chiếc bút màu cam hoặc màu xanh”.

Xem đáp án
4. Tự luận
1 điểmKhông giới hạn

1. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây

(kết quả làm tròn đến chữ số thập phân thứ nhất).

1. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây  (kết quả làm tròn đến chữ số thập phân thứ nhất).  2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]  a) Chứng minh: .  b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).  c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và  \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 1)

2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]

a) Chứng minh: .

b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).

c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và  \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\]

Xem đáp án
5. Tự luận
1 điểmKhông giới hạn

Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?

Xem đáp án
© All rights reserved VietJack