Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án ( Đề 7)
5 câu hỏi
Giá cho thuê nhà trọ của hai chủ nhà A và B như bảng sau:
Chủ nhà | Tiền thuê nhà trọ và tiền nước mỗi tháng | Giá tính mỗi kW.h điện |
A | \[5{\rm{ }}000{\rm{ }}000\] | \[3{\rm{ }}500\] |
B | \[4{\rm{ }}500{\rm{ }}000\] | \[4{\rm{ }}000\] |
Gọi \(x\) (kW.h) là số kW.h điện tiêu thụ mỗi tháng của người thuê nhà, \(y\) (đồng) là số tiền người thuê nhà phải trả trong mỗi tháng.
a) Viết các công thức tính \(y\) theo \(x\) trong trường hợp một người thuê nhà của chủ nhà A và chủ nhà B.
b) Khi nào thì số tiền thuê nhà phải trả trong mỗi tháng cho chủ nhà A và chủ nhà B bằng nhau?
Cho hàm số \(y = \left( {m - 1} \right)x + m\) \((m\) là tham số \(m \ne 1)\) có đồ thị là đường thẳng \(\left( d \right).\)
a) Tìm \(m\) để \(\left( d \right):y = \left( {m - 1} \right)x + m\) song song với \(\left( {d'} \right):y = 2x - 3.\)
b) Vẽ \(\left( d \right)\) với \(m\) tìm được và vẽ \(\left( {d'} \right)\) trên cùng mặt phẳng tọa độ \(Oxy.\)
c) Tìm \(m\) để đường thẳng \(\left( d \right):y = \left( {m - 1} \right)x + m\) và hai đường thẳng \(y = x + 2;\,\,y = \frac{1}{2}x + 3\) đồng quy.
Nhà may \(A\) sản xuất một lô áo gồm 200 chiếc áo với giá vốn là \[30\,\,000\,\,000\] đồng và giá bán một chiếc áo là \[300\,\,000\] đồng. Khi đó gọi \(K\) (đồng) là số tiền lời (hoặc lỗ) củ nhà may thu được khi bán \(t\) chiếc áo.
a) Viết hàm số biểu diễn số tiền lời (hoặc lỗ) \(K\) của nhà may thu được khi bán \(t\) chiếc áo. Hỏi nhà may cần phải bán bao nhiêu chiếc áo mới có thể thu hồi được vốn ban đầu?
b) Để lời được \[6\,\,000\,\,000\] đồng thì nhà may cần phải bán bao nhiêu chiếc áo?
Cho \(\Delta ABC\) có \(AD\) là trung tuyến, trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần l\(B,\,\,C\)ượt tại \(E,\,\,F.\) Từ kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:
a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\) b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\) c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)
Lúc 6 giờ sáng, bạn Hải đi xe đạp từ điểm \[A\] đến trường (tại điểm \(B)\) phải leo lên và xuống một con dốc với đỉnh dốc tại điểm \[C\] (như hình vẽ).
Điểm \(H\) là một điểm thuộc đoạn thẳng \[AB\] sao cho \[CH\] đường là phân giác \(\widehat {ACB},\)\[AH = 0,32{\rm{\;km}}\] và \[BH = 0,4{\rm{\;km}}.\] Biết bạn Hải đi xe đạp đến \[C\] lúc 6 giờ 30 phút với tốc độ trung bình lên dốc là 4 km/h. Hỏi bạn Hải đến trường lúc mấy giờ nếu tốc độ trung bình xuống dốc là \[10{\rm{ km/h}}\,{\rm{?}}\]








