Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án ( Đề 8)
5 câu hỏi
Một hãng máy bay có giá vé đi từ Thành phố Hồ Chí Minh ra Phú Yên là \[1200{\rm{ }}000\]đồng/ người. Trong đó quy định mỗi khách hàng chỉ được mang lên sân bay tối đa 7 kg hành lý. Nếu vượt quá 7 kg hành lý trở đi bắt đầu từ 7 kg trở đi cứ mỗi kg phải trả thêm \[100\,\,000\] đồng cho tiền phạt hành lý.Gọi \[y\] (đồng) là số tiền mỗi người cần trả khi đặt vé đi máy bay từ Thành phố Hồ Chí Minh ra Phú Yên, \[x{\rm{ }}\left( {{\rm{kg}}} \right)\] là khối lượng hành lý người đó mang theo.
a)Viết công thức \[y\] theo \[x\]. Cho biết y có phải là hàm số của x không? Vì sao?
b)Một người đặt vé đi máy bay từ Thành phố Hồ Chí Minh ra Phú Yên và mang theo 9 kg hành lý. Hỏi người đó phải trả tổng cộng bao nhiêu tiền?
Cho ba đường thẳng \(\left( {{d_1}} \right):y = - 2x,\)\(\left( {{d_2}} \right):y = 1,5x + 7\) và \(\left( {{d_3}} \right):y = - 2mx + 5.\)
a) Tìm \(m\) để đường thẳng \(\left( {{d_3}} \right)\) là đồ thị của hàm số bậc nhất.
b) Xét vị trí tương đối của hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) và tìm tọa độ giao điểm nếu có.
c) Tìm \(m\) để ba đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) và \(\left( {{d_3}} \right)\) cắt nhau tại một điểm.
Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng 500 nghìn đồng một giờ.
a) Viết công thức của hàm số biểu thị tổng chi phí \[y\] (nghìn đồng) để thuê một chiếc thuyền du lịch trong \[x\] (giờ).
b) Vẽ đồ thị của hàm số thu được ở câu a để tìm tổng chi phí cho một lần thuê trong 3 giờ. Giao điểm của đồ thị với trục tung biểu thị điều gì?
Cho hình thang \(ABCD\) có hai đáy \(AB\) và \(CD.\) Gọi \(M\) là trung điểm của \(CD,\) \(E\) là giao điểm của \(MA\) và \(BD,\) \(F\) là giao điểm của \(MB\) và \(AC.\) Đường thẳng \(EF\) cắt \(AD,\,\,BC\) lần lượt tại \(H\) và \(N.\)
a) Chứng minh rằng \[EF\,{\rm{//}}\,AB.\]
b) Chứng minh \(HE = EF = FN.\)
c) Biết \(AB = 7,5{\rm{\;cm}},\,\,CD = 12{\rm{\;cm}}.\) Tính độ dài \(HN.\)
Vì kèo mái tôn là một trong những bộ phận không thể thiếu trong cấu tạo mái nhà lợp tôn. Nó giúp chống đỡ và giảm trọng lực của những ảnh hưởng từ các yếu tố bên ngoài tác động vào (Hình a).

Một vì kèo mái tôn được vẽ lại như Hình b. Tính độ dài \(x\) của cây chống đứng bên và độ dài \(y\) của cánh kèo.








