40 câu hỏi
Cho hình nón có bán kính đáy bằng 2cm, góc ở đỉnh bằng . Thể tích của khối nón là:
Cho hai đường thẳng phân biệt a, b và mặt phẳng (). Giả sử a//() và b//(). Mệnh đề nào sau đây đúng?
a và b chéo nhau.
a và b hoặc song song hoặc chéo nhau hoặc cắt nhau.
a và b hoặc song song hoặc chéo nhau
a và b không có điểm chung.
Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a và AC=a. Biết SA(ABC). Thể tích khối chóp S.ABC bằng:
Người ta cần sản xuất một chiếc cốc thủy tinh có dạng hình trụ không có nắp với đáy cốc và thành cốc làm bằng thủy tinh đặc, phần đáy cốc dày đều 1,5cm và thành xung quanh cốc dày đều 0,2cm (hình vẽ). Biết rằng chiều cao của chiếc cốc là 15cm và khi ta đổ 180ml nước vào cốc thì đầy cốc. Nếu giá thủy tinh thành phẩm được tính là thì giá tiền thủy tinh để sản xuất chiếc cốc đó gần nhất với số nào sau đây?
25 nghìn đồng
31 nghìn đồng
40 nghìn đồng
20 nghìn đồng
Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và = Các cạnh AA, A'B, A'D cùng tạo với mặt đáy một góc bằng . Tính theo a thể tích V của khối lăng trụ đã cho.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của AB và M là trung điểm của AD. Khoảng cách từ I đến mặt phẳng (SMC) bằng
Cho tứ diện đều ABCD cạnh 2a. Tính thể tích của khối bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện ABCD.
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật, , vuông góc với mặt phẳng đáy và mặt phẳng (SBC) tạo với mặt đáy một góc . Tính thể tích V của khối cầu ngoại tiếp khối chóp S. ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho , mặt phẳng đi qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại hai điểm H, K. Tính tỉ số thể tích .
Cho khối trụ có bán kính hình tròn đáy bằng r và chiều cao bằng h. Hỏi nếu tăng chiều cao lên 2 lần và tăng bán kính đáy lên 3 lần thì thể tích của khối trụ mới sẽ tăng lên bao nhiêu lần?
18 lần
12 lần
6 lần
36 lần
Hình tứ diện có bao nhiêu cạnh?
5 cạnh
3 cạnh
4 cạnh
6 cạnh
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của là góc tạo bởi đường thẳng EM và mặt phẳng (SBD), bằng:
1
2
Cho tứ diện đều ABCD có M, N lần lượt là trung điểm của các cạnh AB và CD. Mệnh đề nào sau đây sai?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với đáy. Mệnh đề nào sau đây sai?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn . Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng?
(P) không cắt hình chóp.
(P) cắt hình chóp theo thiết diện là một tứ giác.
(P) cắt hình chóp theo thiết diện là một tam giác.
(P) cắt hình chóp theo thiết diện là một ngũ giác.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, đường thẳng SC tạo với đáy một góc . Thể tích của khối chóp S.ABC bằng:
Cho khối trụ có hai đáy là hình tròn (O;R) và (O';R), OO'=4R. Trên đường tròn tâm O lấy (O) lấy hai điểm A, B sao cho AB=R. Mặt phẳng (P) đi qua A, B cắt OO’ và tạo với đáy một góc bằng . (P) cắt khối trụ theo thiết diện là một phần của elip. Diện tích thiết diện đó bằng:
Cho khối cầu (S) tâm I, bán kính R không đổi. Một khối trụ thay đổi có chiều cao h và bán kính đáy r nội tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích của khối trụ lớn nhất.
Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng cạnh đáy. Đường thằng là đường vuông góc chung của A’C và BC’. Tỉ số bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD, góc giữa SM và mặt phẳng đáy là . Độ dài cạnh SA là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. . Xác định x để 2 mặt phẳng (SCD) và (SBC) hợp với nhau một góc .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a, cạnh bên SA vuông góc với mặt đáy, SA = a. Tính thể tích V của khối chóp S.ABC.
Cho một khối lăng trụ có thể tích là , đáy là tam giác đều cạnh a. Tính chiều cao h của khối lăng trụ.
h = 4a
h = 3a
h = 2a
12a
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính diện tích xung quanh của khối nón có đỉnh là tâm hình vuông A’B’C’D’ và có đường tròn đáy ngoại tiếp hình vuông ABCD
Cho hình trụ có diện tích xung quanh bằng 4π, thiết diện qua trục là hình vuông. Tính thể tích V của khối trụ giới hạn bởi hình trụ.
V = 2π
V = π
V = 3π
V = 5π
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy là hình vuông cạnh a, AC’ tạo với mặt bên (BCC’B’) với góc 300. Tính thể tích V của khối hộp ABCDA’B’C’D’.
Cho hình lăng trụ ABC.A’B’C’ có đáy tam giác đều cạnh a. Hình chiếu vuông góc của A’ trên (ABC) là trung điểm của AB, góc giữa A’C và mặt đáy bằng 600. Tính khoảng cách h giữa hai đường thẳng AC và BB.
Một tấm nhôm hình vuông cạnh 10cm, người ta cắt ở bốn góc của tấm nhôm đó bốn tam giác cân bằng nhau (xem hình vẽ), mỗi tam giác cân có chiều cao bằng x, rồi gấp tấm nhôm đó dọc theo đường nét đứt để được một hình chóp tứ giác đều. Tìm x để khối chóp nhận được có thể tích lớn nhất.
x = 4
x = 2
x = 1
Cho tứ diện ABCD có (ABC) vuông góc với (DBC), hai tam giác ABC, DBC là tam giác đều cạnh a. Gọi (S) là mặt cầu đi qua B, c và tiếp xúc với đường thẳng AD tại A. Tính bán kính R của mặt cầu (S).
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính thể tích V của khối tứ diện AB'C'D'.
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, góc giữa SB và mặt đáy bằng 600. Tính khoảng cách h từ A tới mặt phẳng (SBC)
Cho hình chóp tam giác đều cạnh đáy bằng a, góc giữa cạnh bên và mặt phẳng đáy 450. Tính thể tích V của khối chóp
Cho hình chóp SABC có AB=a, BC=, =. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp SABC.
Trong không gian, cho tam giác ABC vuông tại A, AB=a, . Quay tam giác đó một vòng xung quanh BC, ta được một hình tròn xoay. Tính diện tích xung quanh của hình tròn xoay đó.
Cho hình chóp tứ giác SABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, góc giữa SC và AD bằng . Tính thể tích V của khối chóp SABCD.
Cho hình chóp S.ABC có AC=SC=a, SA=. Biết thể tích của khối chóp S.ABC bằng . Tính khoảng cách h từ điểm B tới mặt phẳng (SAC).
Cho hình nón có độ dài đường sinh bằng 4, góc giữa đường sinh và mặt đáy bằng . Tính diện tích toàn phần của hình nón.
Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Tính diện tích xung quanh của mặt cầu ngoại tiếp hình lăng trụ.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3), B(-2,1,5). Véctơ nào dưới đây là véctơ pháp tuyến của mặt phẳng (OAB).
Hình nào dưới đây là khối đa diện ?
a)
b)
c)
d)







