30 câu hỏi
Cho hình chóp tam giác S.ABC có SA vuông góc với đáy, tam giác ABC vuông cân tại B. Có cạnh AB = a. Góc giữa SB và mặt đáy là . Thể tích hình chóp là:
Cho hình lập phương cạnh a. Diện tích mặt cầu đi qua các đỉnh của hình lập phương là:
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a và cạnh bên SA = a Thể tích khối chóp tính theo a là
Cho hình chóp S.ABCD có đáy ABCD là một hình thang với đáy AD và BC. Biết AD = a, BC = b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q. Giả sử AM cắt BP tại E; CQ cắt DN tại F. Tính EF theo a,b
Cho một hình vuông ABCD cạnh a. Khi quay hình vuông theo trục chéo AC thì ta thu được một khối tròn xoay có thể tích và quay quan trục AB được khối tròn xoay có thể tích Khi đó bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, . Biết . Khi đó giá trị lớn nhất của là:
Cắt mặt trụ bởi mặt phẳng như hình vẽ. Thiết diện tạo được là Elip có trục lớn bằng 10. Khi đó thể tích của hình vẽ là:
Cho hình chóp S.ABC có tam giác ABC vuông tại B. Góc giữa SC và mặt phẳng (SBC) là
Trong các mệnh đề sau, mệnh đề nào sai?
Khối tứ diện là khối đa diện lồi
Khối hộp là khối đa diện lồi
Lắp ghép hai khối hộp sẽ được một khối đa diện lồi
Khối lăng trụ tam giác là khối đa diện lồi
Cho hình hộp chữ nhật có .Gọi I là trung điểm của cạnh . Thể tích khối chóp I.BCD bằng:
Tam giác ABC vuông tại A cạnh AB = 6,AC = 8, M là trung điểm của cạnh AC. Thể tích khối tròn xoay do tam giác qua quanh cạnh AB là:
Cho hình chóp S.ABC có đáy vuông cân tại C, AB = 3a và G là trọng tâm tam giác ABC, . Khi đó bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và mặt phẳng (SBD) tạo với mặt phẳng (ABCD) một góc bằng . Gọi M là trung điểm của AD. Tính khoảng cách giữa hai đường thẳng SC và BM
Cắt một khối trụ bởi một mặt phẳng vuông góc với trục của nó ta được thiết diện là một hình tròn có chu vi bằng chu vi vủa hình chữ nhật được tạo thành khi cắt mặt trụ bởi một mặt phẳng đi qua 2 tâm. Khi đó tỉ số của khối trụ bằng:
Cho hình chóp S.ABC với đáy ABC có AB = 10cm,BC = 12cm,AC = 14cm các mặt bên cùng tạo với mặt phẳng đáy các góc bằng nhau và bằng với . Thể tích khối chóp S.ABC là:
182
242
192
252
Cho lăng trụ tứ giác đều có cạnh đáy bằng 2a. Khoảng cách từ A đến mặt phẳng bằng . Thể tích khối lăng trụ là.
Cho hình nón có độ dài đường cao là , bán kính đáy là a. Số đo của góc ở đỉnh là
Cho hình lập phương có cạnh bằng a, một mặt phẳng cắt các cạnh lần lượt tại . Biết . Thể tích khối đa diện ABCD.MNPQ là
Cho khối lăng trụ tam giác có đáy là tam giác đều cạnh 2a, điểm cách đều 3 điểm A, B, C. Cạnh bên tạo với mặt phẳng đáy một góc . Thể tích khối trụ bằng . Giá trị của là.
Đáp án khác
Cho hình hộp có . Lấy M, N, P, Q lần lượt là trung điểm của AA’, BB’,CC, DD’. Biết hình hộp chữ nhật nội tiếp khối trụ (T) và lăng trụ ABCD.MNPQ nội tiếp mặt cầu (C). Tỉ số thể tích giữa khối cầu và khối trụ là
Cho hình chóp S.ABC với AB = SA = a, tất cả các cạnh còn lại bằng b. Độ dài EF (E, F là trung điểm của AB, SC) theo a, b
Cho hình chóp S.ACBD có đáy ABCD là hình chữ nhật, biết AB = 2a, AD = a. Trên cạnh AB lấy điểm M sao cho , Cạnh AC cắt MD tại H. Biết SH vuông gốc với mặt phẳng (ABCD) và SH = a. Khoảng cách giữa hai đường thẳng SD và AC
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, . Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ACD
.
.
.
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD bằng
Một hình trụ có chiều cao h, một thiết diện song song và cách trục một khoảng bằng d chắn trên đáy một dây cung sao cho cung nhỏ có số đo bằng . Thể tích của khối trụ là
.
.
.
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có . M là trung điểm AB, sao cho . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC).
.
.
Cho hình thanh cân ABCD, AD//BC có AB = BC = CD = a; AD = 2a. Thể tích của khối tròn xoay thu được khi xoay hình thang theo trục AC là
.
.
.
.
Lăng trị ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A' lên (ABC) trùng với tâm O của tam giác ABC. Mặt phẳng (P) chứa BC vuông góc với AA' cắt lăng trụ theo thiết diện có diện tích bằng . Thể tích khối lăng trụ ABCA’B’C' bằng
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của ?







