vietjack.com

ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Quiz

ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất

A
Admin
46 câu hỏiĐH Bách KhoaĐánh giá năng lực
46 CÂU HỎI
1. Nhiều lựa chọn

Chọn ngẫu nhiên một số tự nhiên bé hơn 10001000. Xác suất để số đó chia hết cho 55 là:

A. 15

B. 2011000

C. 200999

D. 199999

2. Nhiều lựa chọn

Một hộp đựng 11 thẻ được đánh số 1, 2, 3,…, 11. Rút ngẫu nhiên 3 thẻ và tính tổng các số ghi trên ba thẻ đó. Tính xác suất để tổng nhận được bằng 12.

A. 115

B. 7165

C. 13

D. 355

3. Nhiều lựa chọn

Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:

A. 29

B. 16

C. 736

D. 536

4. Nhiều lựa chọn

Gieo hai con súc sắc. Xác suất để tổng hai mặt bằng 11 là.

A. 118

B. 16

C. 18

D. 215

5. Nhiều lựa chọn

Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn tạo thành tam giác đều là :

A. 114

B. 1220

C. 14

D. 155

6. Nhiều lựa chọn

Gọi T là phép thử "Gieo đồng thời hai con súc sắc đối xứng và đồng chất". Gọi E là biến cố "Có đúng 1 con súc sắc xuất hiện mặt 1 chấm". Tính P(E).

A. 13

B. 518

C. 1136

D. 112

7. Nhiều lựa chọn

Có 8 quả cân lần lượt là 1kg,2kg,3kg,4kg,5kg,6kg,7kg,8kg. Chọn ngẫu nhiên 3 quả cân trong 8 quả cân đó. Tính xác suất để trọng lượng 3 quả cân được chọn không vượt quá 9kg.

A. 115

B. 17

C. 128

D. 18

8. Nhiều lựa chọn

Xếp ngẫu nhiên 3 nam và 3 nữ ngồi vào 6 ghế xếp thành hàng ngang. Xác suất để nam nữ ngồi xen kẽ nhau là:

A. 115

B. 120

C. 110

D. 15

9. Nhiều lựa chọn

Xếp ngẫu nhiên 3 nam và 5 nữ ngồi vào 8 ghế xếp thành hàng ngang. Xác suất để 3 nam ngồi cạnh nhau.

A. 328

B. 120

C. 110

D. 15

10. Nhiều lựa chọn

Một chiếc hộp có 9 thẻ đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ rồi nhân hai số ghi trên hai thẻ với nhau. Xác suất để kết quả nhận được là một số lẻ.

A. 518

B. 712

C. 512

D. 718

11. Nhiều lựa chọn

Từ một hộp chứa 6 quả cầu trắng và 4 quả cầu đen, lấy ra ngẫu nhiên cùng một lúc 4 quả. Xác suất để lấy ra được 4 quả cùng màu là:

A. 328

B. 1210

C. 110

D. 8105

12. Nhiều lựa chọn

Một hộp đựng 9 thẻ được đánh số 1, 2, 3, …, 9. Rút ngẫu nhiên 5 thẻ. Tính xác suất để các thẻ ghi số 1, 2, 3 được rút.

A. 518

B. 19

C. 111

D. 542

13. Nhiều lựa chọn

Có hai hộp đựng bi. Hộp I có 9 viên bi được đánh số 1, 2,… , 9 . Lấy ngẫu nhiên mỗi hộp một viên bi. Biết rằng xác suất để lấy được viên bi mang số chẵn ở hộp II là 310. Xác suất để lấy được cả hai viên bi mang số chẵn là:

A. 215

B. 115

C. 415

D. 715

14. Nhiều lựa chọn

Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.

A. 115

B. 715

C. 815

D. 15

15. Nhiều lựa chọn

Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Xác suất để được ít nhất một lần xuất hiện mặt sấp là: 

A. 3132

B. 2132

C. 1516

D. 132

16. Nhiều lựa chọn

Gieo ngẫu nhiên bốn đồng xu cân đối và đồng chất. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:

A. 416

B. 216

C. 116

D. 616

17. Nhiều lựa chọn

Có hai dãy ghế đối diện nhau, mỗi dãy có ba ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:

A. 25

B. 120

C. 35

D. 110

18. Nhiều lựa chọn

Một hộp đựng 20 viên bi khác nhau được đánh số từ 1 đến 20. Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại. Hỏi có bao nhiêu cách để lấy kết quả thu được là một số chia hết cho 3?

A. 90.

B. 1200.

C. 384.

D. 1025.

19. Nhiều lựa chọn

Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.

A. 0,029

B. 0,019

C. 0,021

D. 0,017

20. Nhiều lựa chọn

Gọi S là tập các số tự nhiên gồm 9 chữ số được lập từ tập X = {6; 7; 8}, trong đó chữ số 6 xuất hiện 2 lần, chữ số 7 xuất hiện 3 lần, chữ số 8 xuất hiện 4 lần. Chọn ngẫu nhiên một số từ tập S; tính xác suất để số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6.

A. 25

B. 1112

C. 45

D. 55432

21. Nhiều lựa chọn

Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm 2 chữ số phân biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng:

A. 145729

B. 448729

C. 281729

D. 154729

22. Nhiều lựa chọn

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1, 2, 3, 4, 5, 6, 7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng

A. 935

B. 1635

C. 2235

D. 1935

23. Nhiều lựa chọn

Một người chơi trò gieo súc sắc. Mỗi ván gieo đồng thời ba con súc sắc. Người chơi thắng cuộc nếu xuất hiện ít nhất 2 mặt sáu chấm. Tính xác suất để trong ba ván, người đó thắng ít nhất hai ván

A. 11296

B. 30819683

C. 5819683

D. 5323328

24. Nhiều lựa chọn

Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C

A. 1120

B. 13

C. 130

D. 115

25. Nhiều lựa chọn

Cho các chữ số 0,1,2,3,4,5,6. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số đã cho. Lấy ngẫu nhiên 2 số từ S, gọi A là biến cố: “tổng hai số lấy được là một số chẵn”. Xác suất của biến cố A là:

A. PA=C4802+C2402C7202

B. PA=C4002+C3202C7202

C. PA=C3002+C4202C7202

D. PA=1C3002+C4202C7202

26. Nhiều lựa chọn

Xếp 1 học sinh lớp A, 2 học sinh lớp B, 5 học sinh lớp C thành một hàng ngang. Tính xác suất sao cho học sinh lớp A chỉ đứng cạnh học sinh lớp B.

A. 25

B. 928

C. 15

D. 328

27. Nhiều lựa chọn

Có 60 quả cầu được đánh số từ 1 đến 60. Lấy ngẫu nhiên đồng thời hai quả cầu rồi nhân các số trên hai quả cầu với nhau. Tính xác suất để tích nhận được là số chia hết cho 10.

A. 209590

B. 161590

C. 53590

D. 78295

28. Nhiều lựa chọn

Có 8 quyển sách Địa lí, 12 quyển sách Lịch sử, 10 quyển sách Giáo dục công dân (các quyển sách cùng một môn thì giống nhau) được chia thành 15 phần quà, mỗi phần gồm 2 quyển khác loại. Lấy ngẫu nhiên 2 phần quà từ 15 phần quà. Xác suất để hai phần quà lấy được khác nhau là:

A. 71105

B. 59190

C. 131190

D. 745

29. Nhiều lựa chọn

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số phân biệt. Chọn ngẫu nhiên 1 số từ S. Xác suất chọn được số lớn hơn 2500 là 

A. P=1368

B. P=5568

C. P=6881

D. P=1381

30. Nhiều lựa chọn

Tổ 1 lớp 11A có 6 nam 7 nữ, tổ 2 có 5 nam, 8 nữ. Chọn ngẫu nhiên mỗi tổ một học sinh. Xác suất để 2 học sinh được chọn đều là nữ là :

A. 2839

B. 15169

C. 56169

D. 30169

31. Nhiều lựa chọn

Trường trung học phổ thông A có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp và khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp tỉnh. Tính xác suất để 9 em được chọn có đủ 3 khối.

A. 72347429

B. 70127429

C. 71237429

D. 73457429

32. Nhiều lựa chọn

Một hộp đựng 8 quả cầu xanh, 12 quả cầu đỏ. Lấy ngẫu nhiên 1 quả cầu trong hộp, sau đó lấy ngẫu nhiên một quả cầu trong các quả cầu còn lại. Xác suất để lấy được 2 quả cầu cùng màu là:

A. 50,53%

B. 49,47%

C. 85,26%

D. 14,74%

33. Nhiều lựa chọn

Từ một hộp chứa 6 quả cầu trắng và 4 quả cầu đen, lấy ra ngẫu nhiên cùng một lúc 4 quả. Xác suất để lấy ra được ít nhất một quả màu đen là:

A. 328

B. 1314

C. 114

D. 8105

34. Nhiều lựa chọn

Có hai hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng, hộp thứ hai chứa 2 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên bi, tính xác suất để 2 viên lấy ra cùng màu.

A. 1021

B. 421

C. 27

D. 1121

35. Nhiều lựa chọn

Một hộp đựng 8 bi đỏ và 4 bi xanh. Từ hộp trên lấy lần lượt ngẫu nhiên không hoàn lại từng viên bi đến viên bi thứ ba thì dừng. Xác suất để lấy được hai bi đỏ và một bi xanh là:

A. 2855

B. 56165

C. 28165

D. 1455

36. Nhiều lựa chọn

Mỗi đề thi có 5 câu được chọn ra từ 100 câu có sẵn. 1 học sinh học thuộc 80 câu. Tính xác suất để học sinh rút ngẫu nhiên ra 1 đề thi có 4 câu đã học thuộc.

A. 0,08192

B. 0,82

C. 0,42

D. 0,5252

37. Nhiều lựa chọn

Xác suất bắn trúng đích của một người bắn súng là 0,6. Xác suất để trong ba lần bắn độc lập người đó bắn trúng đích đúng một lần.

A. 0,4

B. 0,6

C. 0,096

D. 0,288

38. Nhiều lựa chọn

Một chiếc tàu khoan thăm dò dầu khí trên thềm lục địa có xác suất khoan trúng túi dầu là 0,4. Xác suất để trong 5 lần khoan độc lập, chiếc tàu đó khoan trúng túi dầu ít nhất một lần.

A. 0,07776

B. 0,84222

C. 0,15778

D. 0,92224

39. Nhiều lựa chọn

Hai cầu thủ bóng đá sút phạt đền, mỗi người được sút một quả với xác suất bàn tương ứng là 0,8 và 0,7. Tính xác suất để chỉ có 1 cầu thủ làm bàn.

A. 0,14

B. 0,38

C. 0,24

D. 0,62

40. Nhiều lựa chọn

Một ngân hàng đề thi có 20 hạng mục, mỗi hạng mục có 10 câu hỏi. Đề thi có 20 câu hỏi tương ứng 20 hạng mục sao cho mỗi hạng mục có đúng 1 câu hỏi. Máy tính chọn từ ngân hàng ngẫu nhiên 2 đề thi thỏa mãn tiêu chí trên. Tìm xác suất để 2 đề thi có ít nhất 3 câu hỏi trùng nhau. (Kết quả làm tròn đến hàng phần nghìn.)

A. 0,167

B. 0,593

C. 0,190

D. 0,323

41. Nhiều lựa chọn

Gieo một con xúc sắc cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba.

A. 10216

B. 15216

C. 16216

D. 1565

42. Nhiều lựa chọn

Một con xúc sắc cân đối, đồng chất được gieo 6 lần. Xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là:

A. 3123328

B. 4123328

C. 5123328

D. 2123328

43. Nhiều lựa chọn

Có 5 nam, 5 nữ xếp thành một hàng dọc. Tính xác suất để nam, nữ đứng xen kẽ nhau.

A. 1125

B. 1126

C. 136

D. 1336

44. Nhiều lựa chọn

Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều.

A. 144136

B. 7816

C. 23136

D. 21136

45. Nhiều lựa chọn

Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác cân bằng

A. 634

B. 1934

C. 2734

D. 734

46. Nhiều lựa chọn

Gọi A là tập hợp tất cả các số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A. Xác suất để số tự nhiên được chọn chia hết cho 25 bằng:

A. 43324

B. 127

C. 11324

D. 1781

© All rights reserved VietJack