vietjack.com

ĐGTD ĐH Bách khoa - Tư duy Toán học - Phương trình lượng giác thường gặp
Quiz

ĐGTD ĐH Bách khoa - Tư duy Toán học - Phương trình lượng giác thường gặp

V
VietJack
ĐH Bách KhoaĐánh giá năng lực9 lượt thi
33 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình sin2x+3sin4x=0 có nghiệm là:

x=kπ2x=±12arccos16+kπkZ

x=kπ2x=±52arccos16+kπkZ

x=kπ2x=±12arccos13+kπkZ

x=kπ2x=±13arccos16+kπkZ

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình cos2x1sin2x=0 có nghiệm là:

x=π4+kπkZ

x=π4+kπ2kZ

x=3π4+2kπkZ

x=3π4+kπkZ

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình 3cot2x4cotx+3=0 có nghiệm là:

x=π3+kπx=π6+kπkZ

x=π3+k2πx=π6+k2πkZ

x=π3+kπx=π6+kπkZ

x=π3+k2πx=π6+kπkZ

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Nghiệm của phương trình 4sin22x+8cos2x9=0 là:

x=±π6+kπkZ

x=±π6+k2πkZ

x=±π3+kπkZ

x=π6+kπkZx=π3+kπkZ

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Số vị trí biểu diễn các nghiệm của phương trình 4sin2 x − 4sinx – 3 = 0  trên đường tròn lượng giác là:

0

1

2

4

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình 3sin2xcos2x+1=0 có nghiệm là:

x=kπx=π3+kπkZ

x=kπx=2π3+k2πkZ

x=k2πx=2π3+k2πkZ

x=kπx=2π3+kπkZ

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình sinx+3cosx=2 có hai họ nghiệm có dạng x=α+k2π,x=β+k2π,π2<α<β<π2. Khi đó α, β là:

5π212

5π2144

5π2144

π212

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình sin18xcos13x=sin9xcos4x

x=kπ18;x=kπ22kZ

x=kπ9;x=π44+kπ22kZ

x=π3+kπ18;x=π22+kπ22kZ

x=kπ3;x=π44+kπ44kZ

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Để phương trình a21tan2x=sin2x+a22cos2x có nghiệm, tham số a thỏa mãn điều kiện:

a1

a>1

a=1

a1

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Giải hệ phương trình xy=π3cosxcosy=1

x=π6+k2πy=π6+k2πkZ

x=2π3+k2πy=π3k2πkZ

x=2π3+k2πy=π3+k2πkZ

x=π2+k2πy=π6+k2πkZ

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình sin23x+m23sin3x+m24=0 khi m = 1 có nghiệm là:

x=π6+k2πkZ

x=π6+k2π3kZ

x=π6+k2π3kZ

x=±π6+k2π3kZ

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Khẳng định nào đúng về phương trình 22sinx+cosxcosx=3+cos2x

Có 1 họ nghiệm

Có 2 họ nghiệm

Vô nghiệm

Có 1 nghiệm duy nhất

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Số vị trí biểu diễn nghiệm của phương trình sinx+32cosx=1 trên đường tròn lượng giác là:

0

1

2

3

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Tổng các nghiệm thuộc đoạn 0;π2 của phương trình 23cos25x2+sin5x=1+3 là:

3π5

29π30

5π6

23π30

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình sin3x+cos3x=sinxcosx có nghiệm là:

x=kπkZ

x=π2+kπkZ

x=π6+k2πkZ

Tất cả đều đúng

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình 6sin2x+73sin2x8cos2x=6 có nghiệm là:

x=π2+kπx=π6+kπkZ

x=π4+kπx=π3+kπkZ

x=π8+k2πx=π12+k2πkZ

x=π8+kπx=π12+kπkZ

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Trong khoảng 0;π2 phương trình sin24x+3sin4xcos4x4cos24x=0 có:

Ba nghiệm

Một nghiệm

Hai nghiệm

Bốn nghiệm

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình 3cos5x2sin3xcos2xsinx=0 ta được nghiệm:

x=π9+k2π3;kZ

x=π18+kπ6;kZ

x=±π6+kπ2;kZ

x=π18+kπ3;x=π6+kπ2;kZ

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình cosxcosx2cos3x2sinxsinx2sin3x2=12

x=π4+kπ;x=π6+k2π;x=5π6+k2π;x=π2+k2πkZ

x=π4+k2π;x=π6+k2π;x=5π6+kπ;x=π2+kπkZ

x=±π6+k2π;x=5π6+k2π;x=π2+k2πkZ

x=π8+kπ;x=π6+kπ;x=5π6+kπ6;x=π2+kπ6kZ

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình 8sinx=3cosx+1sinx

x=π6+kπ2;x=π12+kπ2kZ

x=π12+kπ4kZ

x=±π6+kπ;x=π12+kπ2kZ

x=π6+kπ;x=π12+kπ2kZ

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình sin3x23sin2x=2sinxcos2x

x=±π3+k2π;x=2π3+k2πkZ

x=π4+kπ;x=π6+kπkZ

x=kπ;x=π3+k2π;x=2π3+k2πkZ

x=π2+kπ;x=π6+kπ3kZ

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình sinx+3cosx.sin3x=2

x=π6+kπ,kZ

x=π12+kπ2,kZ

x=2π3+kπ,kZ

x=kπ12;x=2π3+kπ,kZ

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình 1+sinx+cos3x=cosx+sin2x+cos2x

x=kπ;x=π6+kπ3,x=π12+kπ,x=5π7+kπ

x=k2π;x=π3+k2π3,x=π6+k2π,x=7π6+k2π

x=kπ;x=π3+k2π3,x=π12+kπ,x=5π12+kπ

x=k2π;x=π6+k2π3,x=π12+kπ,x=7π12+kπ

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình cosx+cos3x+2cos5x=0

x=π2+kπ,x=±15arccos1+178+kπ,x=±15arccos1178+kπ

x=±π6+kπ

x=±12arccos1+157+kπ,x=±12arccos1157+kπ

x=π2+kπ,x=±12arccos1+178+kπ,x=±12arccos1178+kπ

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình sin3xsinx+sin2x=0

x=kπ,x=π3+k2π3

x=±π3+k2π3

x=π2+kπ,x=π3+k2π3

x=2kπ,x=π2+kπ3

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu giá trị m nguyên để phương trình:sin2xmsinxcosx3cos2x=2m có nghiệm?

0

1

2

3

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình tanx+cotx=m có nghiệm x0;π2 có tổng là:

9

3

6

7

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Với giá trị nào của m thì phương trình 1mtan2x2cosx+1+3m=0 có nhiều hơn 1 nghiệm trên 0;π2?

m12

m=12

13<m<1m12

13<m<1

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình cos2x+cos4x+cos6x=cosxcos2xcos3x+2

x=kπkZ

x=2π3+2kπkZ

x=π3+2kπkZ

x=kπ3kZ

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình 4sinxsinx+π3sinx+2π3+cos3x=1

Vô nghiệm

x=π6+k2π3kZ hoặc x=k2π3kZ

x=π6+k2πkZ

x=π6+kπ3kZ

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình cos3xtan5x=sin7x

x=nπ2;x=π20+kπ13k,nZ

x=nπ;x=π20+kπ10k,nZ

x=nπ;x=3π5+2kπ7k,nZ

x=nπ;x=3π5+7kπ13k,nZ

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Số nghiệm của phương trình sin5x+3cos5x=2sin7xtrên khoảng 0;π2 là:

2

3

1

4

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Gọi m, M lần lượt là GTNN và GTLN của hàm số y=sinx+3sinx+cosx+2. Khi đó giá trị của biểu thức m + M bằng

245

285

5

258

Xem đáp án
© All rights reserved VietJack