vietjack.com

Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 7)
Quiz

Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 7)

V
VietJack
ToánTốt nghiệp THPT4 lượt thi
50 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho mặt phẳng P:2xy+5z3=0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

n3=2;5;3.

n4=2;1;5.

n1=2;1;5.

n2=1;5;3.

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Với a là số thực dương tùy ý, giá trị log4a8 bằng:

2log4a.

2log4a.

32log2a.

4log2a.

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) là:

y=x4+1.

y=x4+2x.

y=xx2+1.

y=x.

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Một quả bóng tiêu chuẩn được bơm hơi với áp suất trong khoảng 8,5 – 15,6 Psi (Psi: đơn vị đo áp suất thường dùng ở Mỹ). Lúc đầu quả bóng được bơm hơi 90% áp suất tối đa (15,6 Psi) sau mỗi ngày áp suất hơi trong quả bóng giảm đi 1,5% so với ngày trước đó. Hỏi sau tối đa bao nhiêu ngày phải bơm lại bóng để đạt tiêu chuẩn quy định?

36 ngày.

33 ngày.

35 ngày.

34 ngày.

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Cho cấp số cộng (un) có số hạng đầu u1 = -3 và u6 = 27. Khi đó công sai d bằng:

7

5

8

6

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = ax3+bx2+cx+d có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

a<0,b>0,c>0,d>0.

a<0,b<0,c=0,d>0.

a>0,b<0,c>0,d>0.

a<0,b>0,c=0,d>0.

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho 3 điểm A(2;1;-1), B(-1;0;4), C(0;-2;-1). Phương trình mặt phẳng đi qua điểm A và vuông góc với đường thẳng BC là:

x2y5z+5=0.

x+2y+5z5=0.

x2y5=0.

x2y5z5=0.

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối nón có bán kính đáy r=4, chiều cao h=6 như hình vẽ. Thể tích của khối nón là:

16π3.

4π63.

16π6.

16π63.

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Có bao nhiêu cách chọn 3 học sinh để tham gia vệ sinh công cộng?

9880.

59280.

2300.

455.

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;3;4) trên trục Oz là:

N0;3;4.

P2;0;4.

Q2;0;0.

E0;0;4.

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Tính tích phân I=012020exdx.

I=2020ee1.

I=2020e.

I=2020e1.

I=2020e2.

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối lăng trụ ABC.A’B’C’, mặt bên (ABB’A’) có diện tích bằng 10. Khoảng cách đỉnh C đến mặt phẳng (ABB’A’) bằng 6. Thể tích khối lăng trụ đã cho bằng:

40

60

30

20

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Cho z = iz+2020. Số phức liên hợp của số phức z là:

1010+1010i.

1010+1010i.

10101010i.

10101010i.

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.

Hàm số đạt cực tiểu tại điểm

x=0

x=1

x=-1

x=-1 và x=3

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Doraemon có hẹn với các bạn tham dự trận bóng đá, nhưng do ngủ quên nên khi tỉnh dậy thì sắp đến giờ trận đấu bắt đầu. Doraemon dùng chiếc chổi bay với vận tốc vt=6t2+2t50m/s, biết nhà Doraemon cách sân bóng 1600 m. Hỏi sau bao lâu Doraemon đến được sân bóng?

5 giây.

8 giây.

10 giây.

12 giây.

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như hình vẽ.

Hỏi phương trình 2f(x)+7 = 0 có bao nhiêu nghiệm?

4

1

2

3

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB=a2. Biết SAABC và SA=a. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng:

30o

45o

60o

90o

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Gọi z1, z2 là hai nghiệm phức phương trình z24z+12=0. Giá trị 1z1+1z2 bằng:

13.

13.

16.

16.

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Sau khi phát hiện dịch bệnh viêm đường hô hấp cấp do vi rút 2019-nCoV gây ra, nhóm các chuyên gia y tế đã nghiên cứu độc lập tại một địa phương của thành phố Vũ Hán trong 1 tháng. Theo thống kê, số người nhiễm bệnh được biểu thị là đồ thị hàm số f(x). Tốc độ truyền bệnh (người/ngày) được biểu thị bởi đồ thị hàm số f’(x).

Tại thời điểm tốc độ truyền bệnh lớn nhất thì số người mắc bệnh là:

154

6

14

200

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số fx=cos22xsinxcosx trên R. Giá trị M+m bằng:

12.

2516.

916.

58.

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho mặt cầu S:x2+y2+z22x2z=0 và mặt phẳng α:4x+3y+mz=0. Có bao nhiêu giá trị nguyên của tham số m để (α) cắt (S) theo giao tuyến là một đường tròn?

14

15

1

Vô số

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC bằng a34. Thể tích của khối lăng trụ là:

a3312.

a336.

a333.

a3324.

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=f(x) liên tục trên R, có đạo hàm f'x=xx12018x+22019x32020. Số điểm cực trị của hàm số y=f(x) là:

3

2

4

1

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Cho a là số thực dương khác 1. Biểu thức P=loga2019+loga2019+loga32019+...+loga20182019+loga20192019 bằng:

1010.2019.loga2019.

2018.2019.loga2018.

2018.loga2018.

2019.loga2018.

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Trên mặt phẳng tọa độ Oxy, hai điểm A, B lần lượt biểu diễn hai số phức z1 và z2. Điểm biểu diễn số phức z=2z1z2¯ là điểm nào sau đây?

Điểm M.

Điểm N.

Điểm P.

Điểm Q.

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình 25log52+x2=5x+log52 có nghiệm là:

x=12.

x=0.

x=0x=log52.

x=5.

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Một khối pha lê gồm một hình cầu (H1), bán kính R và một hình nón cụt (H2) có bán kính đáy lớn, đáy nhỏ và chiều cao lần lượt là r1=2R,r2=R,h=2R xếp chồng lên nhau như hình vẽ. Biết thể tích khối cầu (H1) và khối nón cụt (H2) lần lượt là V1 và V2. Tỉ số V1V2 bằng:

37.

87.

47.

27.

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=f(x) liên tục trên R\{1} và có bảng biến thiên như sau:

Đồ thị hàm số y=14fx225 có bao nhiêu đường tiệm cận đứng?

2

4

6

8

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Một viên gạch hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô màu như hình vẽ bên). Diện tích phần không tô màu của viên gạch bằng:

44003cm2.

16003cm2.

32003cm2.

40003cm2.

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian, cho hai điểm A, B cố định có độ dài AB bằng 6. Tập hợp các điểm M trong không gian sao cho MA=2MB là một mặt cầu có bán kính bằng:

62

22

32

6

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Biết rằng hàm số F(x) là một nguyên hàm của hàm số fx=ln2x+4.lnxx và thỏa mãn F1=83. Giá trị của [F(e)]2 bằng:

83.

12527.

5527.

1259.

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x). Biết f(0)=2 và f'x=2ex+1ex,x, khi đó 01fxdx bằng:

3e1e.

3e+1e.

3e+1e.

3e1e.

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho hai đường thẳng d1:x=2y=1+tz=2+2t;d2:x11=y+11=z31. Đường thẳng Δ vuông góc và cắt đồng thời hai đường thẳng d1 và d2 có phương trình là:

Δ:x+11=y12=z+31.

Δ:x11=y+12=z31.

Δ:x11=y22=z+11.

Δ:x+21=y+12=z+21.

Xem đáp án
34. Trắc nghiệm
1 điểmKhông giới hạn

Cho số phức z thỏa mãn điều kiện :z+i=z¯+2+i. Giá trị nhỏ nhất của biểu thức P=i1z+42i bằng:

1

32.

3

322.

Xem đáp án
35. Trắc nghiệm
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Đặt IA=x, IB=y, IC=z, biết rằng 1x2=1y2+1z2+ayz. Giá trị của a bằng:

2

1

3

5

Xem đáp án
36. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x), hàm số y = f’(x) liên tục trên R và có đồ thị như hình vẽ. Bất phương trình f(x)>2x+m (m là tham số thực) nghiệm đúng với mọi x1;2 khi và chỉ khi:

m<f24.

mf24.

mf1+2.

m<f1+2.

Xem đáp án
37. Trắc nghiệm
1 điểmKhông giới hạn

Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau được lập từ tập hợp X={1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để chọn ra được một số có các chữ số 1, 2, 8, 9 trong đó các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau bằng:

3142.

95126.

2528.

1318.

Xem đáp án
38. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng (P) song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng a2, ta được thiết diện là một hình vuông. Thể tích khối trụ bằng:

3πa3.

πa33.

πa334.

πa3.

Xem đáp án
39. Trắc nghiệm
1 điểmKhông giới hạn

Giả sử m là số thực sao cho phương trình log32xm+2log3x+3m2=0 có hai nghiệm x1, x2 thỏa mãn x1.x2=9. Khi đó m thuộc khoảng nào dưới đây?

m1;1.

m4;6.

m3;4.

m1;3.

Xem đáp án
40. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABC có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng 30o. Biết AB=5, AC=7, BC=8 tính khoảng cách d từ A đến mặt phẳng (SBC).

d=353952.

d=353913.

d=351352.

d=351326.

Xem đáp án
41. Trắc nghiệm
1 điểmKhông giới hạn

Cho các hàm số f(x), g(x) liên tục trên đoạn [0;1] thỏa mãn m.fx+n.f1x=gx với m, n là các số thực khác 0 và 01fxdx=01gxdx=1. Giá trị của m+n là:

m+n=0.

m+n=12.

m+n=1.

m+n=2.

Xem đáp án
42. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho A(1;-1;2), B(-2;0;3), C(0;1;-2). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S=MA.MB+2MB.MC+3MC.MA đạt giá trị nhỏ nhất. Khi đó T=12a+12b+c có giá trị là:

T=3

T=-3

T=1

T=-1

Xem đáp án
43. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) = ax2+bx+c có đồ thị như hình vẽ. Kí hiệu [X] là phần nguyên của X. Số nghiệm của phương trình ffff...fx2020 lÇn f=0 trên [1;2] là:

220223+12+1.

22021312+1.

220213+32+1.

220213+52+1.

Xem đáp án
44. Trắc nghiệm
1 điểmKhông giới hạn

Cho z là số phức thay đổi thỏa mãn số phức w=z+3+4izi là số thuần ảo. Tập hợp các điểm biểu diễn cho số phức z là:

đường elip bỏ đi một điểm.

đường thẳng song song với trục tung.

đường tròn bỏ đi một điểm.

đường thẳng bỏ đi một điểm.

Xem đáp án
45. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai hàm số y = f(x), y = g(x) có đồ thị hàm số y = f’(x), y = g’(x) như hình vẽ sau:

Xét hàm số h(x) = f(x)-g(x) trên [-5;5], biết rằng S2<S1=S3. Khi đó giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = h(x) trên đoạn [-5;5] lần lượt bằng:

h(-5) và h(5)

h(-5) và h(-2)

h(2) và h(5)

h(2) và h(-2)

Xem đáp án
46. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đạo hàm liên tục trên R và hàm số y = f’(x) có đồ thị như hình vẽ bên. Hàm số y = f(|2x-1|) có bao nhiêu điểm cực trị?

1

3

5

7

Xem đáp án
47. Trắc nghiệm
1 điểmKhông giới hạn

Cho tứ diện ABCD và các điểm M, N, P thuộc các cạnh BC, BD, AC sao cho BC=4BM, AC=3AP, BD=2BN. Tỉ số thể tích hai phần của khối tứ diện ABCD được phân chia bởi mặt phẳng (MNP) bằng:

713.

715.

815.

813.

Xem đáp án
48. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x2+y2+z22x4y+6z13=0 và điểm M nằm ngoài mặt cầu (S) sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) và BMC^=60°,AMB^=90°,CMA^=120°. Khi đó, thể tích khối chóp M.ABC bằng:

2724.

924.

922.

934.

Xem đáp án
49. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị hàm số f(x) = ax3+bx2+cx+d có dạng như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình f(f(x)+1)=m có số nghiệm là lớn nhất?

5

2

4

3

Xem đáp án
50. Trắc nghiệm
1 điểmKhông giới hạn

Biết m là một số thực để bất phương trình 3x+4mx+5x2mx30, thỏa mãn với mọi x. Mệnh đề nào dưới đây đúng?

m10;+.

m3;6.

m2;3.

m6;10.

Xem đáp án
© All rights reserved VietJack