vietjack.com

Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 6)
Quiz

Đề thi thử tốt nghiệp môn Toán THPT năm 2022 có đáp án (Đề 6)

A
Admin
50 câu hỏiToánTốt nghiệp THPT
50 CÂU HỎI
1. Nhiều lựa chọn

Hình hộp chữ nhật đứng đáy là hình thoi có bao nhiêu mặt phẳng đối xứng?

A. 2

B. 1

C. 3

D. 4  

2. Nhiều lựa chọn

Cho số phức z = (1-2i)2. Tính mô đun của số phức 1z

A. 15

B. 5

C. 125

D. 15  

3. Nhiều lựa chọn

Tìm tất cả các giá trị của tham số m để phương trình x3+3x22=m có hai nghiệm phân biệt.

A. m(;2].

B. m2;2.

C. m[2;+).

D. m2;2.  

4. Nhiều lựa chọn

Trên đồ thị C:y=x+1x+2 có bao nhiêu điểm M mà tiếp tuyến với (C) tại M song song với đường thẳng d:x+y=1.

A. 0

B. 4

C. 3

D. 2  

5. Nhiều lựa chọn

Cho hàm số y=x3+bx2+cx+d,b,c,d có đồ thị như hình vẽ. Mệnh đề nào dưới đây là đúng?

A. b<0,c<0,d>0.

B. b>0,c<0,d>0.

C. b<0,c>0,d<0.

D. b>0,c>0,d>0.  

6. Nhiều lựa chọn

Cho hàm số y = f(x) có f'x>0   x. Tìm tập hợp tất cả các giá trị thực của x để f1x<f1.

A. ;00;1.

B. ;01;+.

C. ;1.

D. 0;1.  

7. Nhiều lựa chọn

Cho hàm số y = f(x) có đạo hàm y'=x2x2. Mệnh đề nào sau đây đúng?

A. Hàm số nghịch biến trên R 

B. Hàm số đồng biến trên (0;2) 

C. Hàm số nghịch biến trên (-∞;0) và (2;+∞) 

D. Hàm số đồng biến trên (2;+∞)  

8. Nhiều lựa chọn

Cho cấp số nhân (un) có u1 = 2 và biểu thức 20u1-10u2+u3 đạt giá trị nhỏ nhất. Tìm số hạng thứ bảy của cấp số nhân (un) ?

A. 2000000.

B. 136250.

C. 39062.

D. 31250.  

9. Nhiều lựa chọn

Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3) đồng thời vuông góc với hai mặt phẳng Q:x+y+3z=0,  R:2xy+z=0 là:

A. 4x+5y3z+22=0.

B. 4x+5y3z+22=0.

C. 2x+y3z14=0.

D. 4x+5y3z22=0.  

10. Nhiều lựa chọn

Đạo hàm của hàm số y = ln(5-3x2) là:

A. 63x25.

B. 2x53x2.

C. 6x3x25.

D. 6x3x25.  

11. Nhiều lựa chọn

Đặt a = log25 và a = log35. Biểu diễn đúng log65 theo a, b là:

A. 1a+b.

B. a+b.

C. aba+b.

D. a+bab.  

12. Nhiều lựa chọn

Cho số phức z thỏa mãn 2zi.z¯=2+5i. Môđun của số phức z bằng

A. z=7.

B. z=5.

C. z=25.

D. z=1455.  

13. Nhiều lựa chọn

Một hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 5

B. 3

C. 4 

D. 6  

14. Nhiều lựa chọn

Họ nguyên hàm của hàm số f(x) = x-sin2x

A. x22+cos2x+C.

B. x22+12cos2x+C.

C. x2+12cos2x+C.

D. x2212cos2x+C.  

15. Nhiều lựa chọn

Cho hình chóp SABCD, có đáy ABCD là hình vuông tâm O, cạnh bên vuông góc với mặt đáy. Gọi M là trung điểm của SA, N là hình chiếu vuông góc của A lên SO. Mệnh đề nào sau đây đúng?

A. ACSBD.

B. DNSAB.

C. ANSOD.

D. AMSBC.  

16. Nhiều lựa chọn

Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số y=x2+m2+2mx2 trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để A+B=192.

A. m=1;m=3.

B. m=1;m=3.

C. m=±3.

D. m=4.  

17. Nhiều lựa chọn

Giả sử hàm số f(x) liên tục trên đoạn [0;2] thỏa mãn 02fxdx=6. Tính tích phân I=0π2f2sinxcosxdx.

A. 3

B. -3

C. 6

D. -3  

18. Nhiều lựa chọn

Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C trên trục Ox, có hoành độ dương sao cho tam giác ABC vuông tại C.

A. C(3;0)

B. C(1;0)

D. (5;0)

D. (6;0)  

19. Nhiều lựa chọn

Giá trị lớn nhất của hàm số y=x2+16x trên đoạn 32;4 bằng:

A. 24

B. 20

C. 12

D. 15512  

20. Nhiều lựa chọn

Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy hình trụ, AB=4a, AC=5a. Tính thể tích khối trụ:

A. V=8πa3.

B. V=16πa3.

C. V=12πa3.

D. V=4πa3.  

21. Nhiều lựa chọn

Cho hàm số y=log12x. Mệnh đề nào dưới đây là mệnh đề sai?

A. Hàm số đã cho nghịch biến trên từng khoảng xác định. 

B. Đồ thị hàm số đã cho không có tiệm cận ngang. 

C. Đồ thị hàm số đã cho có một tiệm cận đứng là trục tung. 

D. Hàm số đã cho có tập xác định là D=\0.  

22. Nhiều lựa chọn

Cho x là số thực dương, khai triển nhị thức x2+1x12 ta có hệ số của số hạng chứa xm bằng 792: Giá trị của m là:

A. m=3 và m=9 

B. m=0 và m=9

C. m=9

D. m=0  

23. Nhiều lựa chọn

Tìm tập nghiệm S của phương trình 2x+1=4

A. S=4.

B. S=1.

C. S=3.

D. S=2.  

24. Nhiều lựa chọn

Cho tứ diện ABCD có ACDBCD,AC=AD=BC=BD=A,CD=2Aa. Giá trị của O để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

A. a23.

B. a33.

C. a32.

D. a53.  

25. Nhiều lựa chọn

Cho khối chóp SABCD có đáy là hình vuông cạnh a2,ΔSAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, cạnh bên SA tạo với đáy góc 60o. Tính thể tích V của khối chóp SABCD.

A. V=a3324.

B. V=a3312.

C. V=a3624.

D. V=a3224.  

26. Nhiều lựa chọn

Cho tích phân I=0π4x1sin2xdx. Đẳng thức nào sau đây là đúng?

A. I=x1cos2x0π4cos2xdx.

B. I=12x1cos2x0π40π4cos2xdx.

C. I=12x1cos2x0π4+120π4cos2xdx.

D. I=x1cos2x0π4+0π4cos2xdx.  

27. Nhiều lựa chọn

Cho hàm số y = f(x) có đạo hàm cấp 2 trên khoảng K và xoK. Mệnh đề nào sau đây đúng?

A. Nếu f”(x0)=0 thì x0 là điểm cực trị của hàm số y = f(x)  

B. Nếu x0 là điểm cực trị của hàm số y = f(x) thì f”(x0)≠0   

C. Nếu x0 là điểm cực trị của hàm số y = f(x) thì f’(x0)=0  

D. Nếu x0 là điểm cực trị của hàm số y = f(x) thì f”(x0)>0    

28. Nhiều lựa chọn

Tìm nguyên hàm của hàm số fx=1xlnx+22

A. fxdx=1lnx+2+C.

B. fxdx=1lnx+2+C.

C. fxdx=xlnx+2+C.

D. fxdx=lnx+2+C.  

29. Nhiều lựa chọn

Tính tích tất cả các nghiệm của phương trình 22x2+5x+4=4

A. 1

B. 52

C. -52 

D. -1   

30. Nhiều lựa chọn

Ký hiệu (H) là hình phẳng giới hạn bởi các đường y=x1ex22x;y=0;x=2. Tích thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành

A. V=π2e12e.

B. V=π2e32e.

C. V=πe12e.

D. V=πe32e.  

31. Nhiều lựa chọn

Trong không gian với hệ trục tọa độ Oxyz cho a=1;2;3 và b=2;1;1. Khẳng định nào sau đây đúng?

A. Vecto a không vuông góc với b  

B. Vecto a cùng phương với b 

C. a=14. 

D. a;b=5;7;3  

32. Nhiều lựa chọn

Cho hình chóp S.ABCD có SC=x0<x<a3, các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi x=amnm,n*. Mệnh đề nào sau đây đúng?

A. m+2n=10.

B. 2m23m<15.

C. m2n=30.

D. 4mn2=20.  

33. Nhiều lựa chọn

Có bao nhiêu giá trị nguyên của tham số m để hàm số sau đạt cực tiểu tại x=0:   y=x8+m+1x5m21x4+1

A. Vô số 

B. 3

C. 2

D. 4 

34. Nhiều lựa chọn

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để phương trình x+2x2+12+18x2+1x2+1x+2+x2+1=mx2+1 có nghiệm thực?

A. 25

B. 2019

C. 2018

D. 2012  

35. Nhiều lựa chọn

Tìm tất cả các giá trị của tham số m để phương trình sau có đúng bốn nghiệm phân biệt 735x2+m7+35x2=2x21

A. 0<m<116.

B. 0m<116.

C. 12<m<0.

D. 12<m116.  

36. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho A3;0;0;B0;0;3;C0;3;0 và mặt phẳng P:x+y+z3=0. Tìm trên (P) điểm M sao cho MA+MBMC nhỏ nhất

A. M3;3;3.

B. M3;3;3.

C. M3;3;3.

D. M3;3;3.  

37. Nhiều lựa chọn

Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình log2x2+3<logx2+mx+1 có tập nghiệm là R.

A. Vô số

B. 2

C. 5

D. 0  

38. Nhiều lựa chọn

Gọi M là giá trị lớn nhất của hàm số fx=6x26x+12+6xx24.Tính tích các nghiệm của phương trình f(x)=M

A. -6

B. 3

C. -3

D. 6  

39. Nhiều lựa chọn

Gọi F(x) là một nguyên hàm của hàm số fx=x32x2+1 thỏa mãn F(0)=5. Khi đó phương trình F(x)=5 có số nghiệm thực là:

A. 0

B. 1

C. 2

D. 3  

40. Nhiều lựa chọn

Biết phương trình z2+mz+n=0 (với m, n là các tham số thực) có một nghiệm là z=1+i. Tính môđun của số phức z=m+ni

A. 22

B. 4

C. 16  

D. 8 

41. Nhiều lựa chọn

Cho hàm số fx=x2mx+2mx2. Gọi S là tập hợp tất cả các giá trị của tham số m để max[1;1]fx5. Tổng tất cả các phần tử của S là:

A. -11

B. 9

C. -5 

D. -1  

42. Nhiều lựa chọn

Một giải thi đấu bóng đá quốc gia có 12 đội bóng thi đấu vòng tròn hai lượt tính điểm (2 đội bất kì thi đấu với nhau đúng 2 trận). Sau mỗi trận đấu, đội thắng 3 điểm, đội thua 0 điểm, nếu hòa mỗi đội được 1 điểm. Sau giải đấu ban tổ chức thống kê được 60 trận hòa. Hỏi tổng số điểm của tất cả các đội sau giải đấu là

A. 336.

B. 630.

C. 360.

D. 306.  

43. Nhiều lựa chọn

Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:

A. h=3R.

B. h=2R.

C. h=2R.

D. h=R.  

44. Nhiều lựa chọn

Bất phương trình log22x2m+5log2x+m2+5m+4<0 đúng với mọi x[2;4) khi và chỉ khi

A. m[0;1).

B. m[2;0)

C. m(0;1].

D. m(2;0].  

45. Nhiều lựa chọn

Cho tứ diện ABCD có AD(ABC),ABC có tam giác vuông tại B. Biết BC=2a,AB=2a3,AD=6a. Quay tam giác ABC và AB (bao gồm cả điểm bên trong 2 tam giác) xung quanh đường thẳng AB ta được hai khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng:

A. 53πa32.

B. 33πa32.

C. 643πa32.

D. 43πa32.  

46. Nhiều lựa chọn

Cho hàm số y=f(x)xác định và liên tục trên R, có đạo hàm f’(x). Biết rằng đồ thị hàm số f’(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x)+x

A. Không có giá trị. 

B. x=0

C. x=1

D. x=2  

47. Nhiều lựa chọn

Cho hàm số y = f(x) thỏa mãn f'x2+fx.f''x=x32x  x và f(0)=f’(0)=2. Tính giá trị của T=f2(2)

A. 26815.

B. 16015.

C. 26830.

D. 415.  

48. Nhiều lựa chọn

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D cạnh bên SA vuông góc với mặt đáy. Biết AB=2AD=2DC=2a góc giữa hai mặt phẳng (SAB) và (SBC) là 60o. Độ dài cạnh SA là:

A. a2.

B. 2a3.

C. 3a2.

D. a3.  

49. Nhiều lựa chọn

Cho các hàm số fox,f1x,f2x,... biết: fox=lnx+lnx2019lnx+2019,  fn+1x=fnx1,n.

 Số nghiệm của phương trình f2020x=0 là 

A. 6058.

B. 6057.

C. 6059.

D. 6063.  

50. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz cho hai điểm A1;2;1,B0;4;0, mặt phẳng (P) có phương trình 2xy2z+2017=0. Mặt phẳng (Q) đi qua hai điểm A,B và tạo với mặt phẳng (P) một góc nhỏ nhất. (Q) có một vecto pháp tuyến là n(Q)=1;a;b, khi đó a+b bằng

A. 4

B. 0 

C. 1

D. -2  

© All rights reserved VietJack