vietjack.com

Đề thi thử thpt quốc gia môn Toán cực hay có lời giải (Đề 6)
Quiz

Đề thi thử thpt quốc gia môn Toán cực hay có lời giải (Đề 6)

A
Admin
50 câu hỏiToánTốt nghiệp THPT
50 CÂU HỎI
1. Nhiều lựa chọn
1 điểmKhông giới hạn

Tính diện tích hình phẳng giới hạn bởi parabol và đường thẳng y = x

A. 92

B. 116

C. 276

D. 176

Xem giải thích câu trả lời
2. Nhiều lựa chọn
1 điểmKhông giới hạn

Đồ thị hàm số nào dưới đây có tiệm cận ngang?

A. y=x3x1.

B. y=x3+1x2+1.

C. y=x3+1x2+1.

D. y=2x2+3

Xem giải thích câu trả lời
3. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng  a  và cạnh bên bằng b ab.   Phát biểu nào dưới đây SAI?

A. Đoạn thẳng MN là đường vuông góc chung của AB và SC (M và N lần lượt là trung điểm của AB và SC).

B. Góc giữa các cạnh bên và mặt đáy bằng nhau

C. Hình chiếu vuông góc của S trên mặt phẳng (ABC)  là trọng tâm tam giác ABC.

D. SA vuông góc với  

Xem giải thích câu trả lời
4. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai đường thẳng A’C’ và BD bằng

A. 600

B. 300

C. 450

D. 900

Xem giải thích câu trả lời
5. Nhiều lựa chọn
1 điểmKhông giới hạn

Tính tích tất cả các nghiệm của phương trình log22x+log2x=174.

A. 174

B. 14

C. 32

D. 12

Xem giải thích câu trả lời
6. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho a,b là hai số dương bất kì. Mệnh đề nào sau đây là ĐÚNG?

A. lnab=blna.

B. lnab=lna.lnb.

C. lna+b=lna+lnb.

D. lnab=lnalnb.

Xem giải thích câu trả lời
7. Nhiều lựa chọn
1 điểmKhông giới hạn

Tích phân I=01ex+1dx  bằng

A. e21

B. e2e

C. e2+e

D. ee2

Xem giải thích câu trả lời
8. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số f(x) liên trục trên  và có đồ thị như hình vẽ bên. Hàm số f(x) đồng biến trên khoảng nào ? 

A. ;0.

B. ;1.

C. 1;+.

D. 1;1.

Xem giải thích câu trả lời
9. Nhiều lựa chọn
1 điểmKhông giới hạn

limx3x1x+5 bằng

A. 3.

B. -3

C. -15

D. 5

Xem giải thích câu trả lời
10. Nhiều lựa chọn
1 điểmKhông giới hạn

Một nhóm gồm 10 học sinh trong đó có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 3 học sinh từ nhóm 10 học sinh đó đi lao động. Tính xác suất để trong 3 học sinh được chọn có ít nhất một học sinh nữ

A. 23

B. 1748

C. 1724

D. 49

Xem giải thích câu trả lời
11. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x31=y1=z+21  và  điểm M2;1;0.  Gọi (S) là mặt cầu có tâm I thuộc đường thẳng d và tiếp xúc với mp (Oxy) tại điểm M. Hỏi có bao nhiêu mặt cầu thỏa 

A. 2

B. 1

C. 0

D. Vô số

Xem giải thích câu trả lời
12. Nhiều lựa chọn
1 điểmKhông giới hạn

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ? 

A. y=x33x.

B. y=x3+3x.

C. y=x42x2.

D. y=x3x2

Xem giải thích câu trả lời
13. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho số phức z=a+bi  (a,b là các số thực) thỏa mãn z.z+2z+i=0. Tính giá trị của biểu thức T=a+b2.

A. T=432

B. T=3+22

C. T=322

D. T=4+23

Xem giải thích câu trả lời
14. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là

A. 10!

B. 102

C. 210

D. 1010

Xem giải thích câu trả lời
15. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC). Biết SA = 2a  và tam giác ABC vuông tại A có AB=3a, AC=4a. Tính thể tích khối chóp S.ABC theo a

A. 12a3

B. 6a3

C. 8a3

D. 4a3

Xem giải thích câu trả lời
16. Nhiều lựa chọn
1 điểmKhông giới hạn

Họ nguyên hàm của hàm số fx=sin5x+2  là

A. 5cos5x+C

B. 15cos5x+2x+C

C. 15cos5x+2x+C

D. cos5x+2x+C

Xem giải thích câu trả lời
17. Nhiều lựa chọn
1 điểmKhông giới hạn

Tập nghiệm của bất phương trình 132x113  là 

A. ;0

B. 0;1

C. 1;+

D. ;1

Xem giải thích câu trả lời
18. Nhiều lựa chọn
1 điểmKhông giới hạn

Giá trị nhỏ nhất của hàm số y=x3+3x29x+1  trên đoạn 4;4  là

A. -4

B. 4

C. 1

D. -1

Xem giải thích câu trả lời
19. Nhiều lựa chọn
1 điểmKhông giới hạn

Gọi z1,z2  là hai nghiệm phức của phương trình z2+6z+13=0  trong đó z1  là số phức có phần ảo âm. Tìm số phức ω=z1+2z2.

A. ω=9+2i

B. ω=9+2i

C. ω=92i

D. ω=92i

Xem giải thích câu trả lời
20. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxy, cho mặt phẳng P:y2z+1=0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

A. n=1;2;1

B. n=1;2;0

C. n=0;1;2

D. n=0;2;4

Xem giải thích câu trả lời
21. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxy, cho đường thẳng   d:x11=y2=z12. Điểm nào dưới đây KHÔNG thuộc  d?

A. E2;2;3

B. N1;0;1

C. F3;4;5

D. M0;2;1

Xem giải thích câu trả lời
22. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y=fx,y=gx liên tục trên a;b  Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y=fx,y=gx và các đường thẳng x = a, x = b Diện tích (H) được tính theo công thức

A. SH=bbfxdxabgxdx.

B. SH=bbfxgxdx.

C. SH=abfxgxdx

D. SH=abfxgxdx.

Xem giải thích câu trả lời
23. Nhiều lựa chọn
1 điểmKhông giới hạn

Tìm hệ số của số hạng chứa x10  trong khai triển của biểu thức 3x32x25.

A. -810

B. 826

C. 810

D. 421

Xem giải thích câu trả lời
24. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x12+y22+z22=9 và mặt phẳng P:2xy2z+1=0.

A. r = 3

B. r =22

C. r =3

D. r = 2

Xem giải thích câu trả lời
25. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị cực tiểu của hàm số bằng

A. 1

B. 3

C. -3

D. -1

Xem giải thích câu trả lời
26. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình trụ có chiều cao h và bán kính đáy R. Công thức tính thể tích của khối trụ là

A. πRh2

B. πR2h

C. 13πRh2

D. 13πR2h

Xem giải thích câu trả lời
27. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có bảng biến thiên như hình bên. Số nghiệm của phương  trình fx+3=0  là

A. 0

B. 3

C. 2

D. 1

Xem giải thích câu trả lời
28. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho điểm và đường thẳng d có phương trình là x1=y11=z+12.  Tìm hình chiếu vuông góc H của M lên đường thẳng d.

A. H1;0;1

B. H2;3;0

C. H0;1;1

D. H2;1;3

Xem giải thích câu trả lời
29. Nhiều lựa chọn
1 điểmKhông giới hạn

Biết I=01x3x+1+2x+1dx=a+b39,  với a, b là các số thực. Tính tổng  T = a+b

A. T=-10

B. T=-4

C. T=15

D. T=8

Xem giải thích câu trả lời
30. Nhiều lựa chọn
1 điểmKhông giới hạn

Ông V gửi tiết kiệm 200 triệu đồng vào ngân hàng với hình thức lãi kép và lãi suất 7,2% một năm. Hỏi sau 5 năm ông V thu về số tiền (cả vốn lẫn lãi) gần nhất với số nào sau đây?

A. 283.145.000 đồng

B. 283.155.000 đồng

C. 283.142.000 đồng

D. 283.151.000 đồng.

Xem giải thích câu trả lời
31. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho số phức z=3+2i Tính z

A. z=5.

B. z=13.

C. z=5.

D. z=13.

Xem giải thích câu trả lời
32. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC

A. a33.

B. a55.

C. 2a33.

D. 2a55.

Xem giải thích câu trả lời
33. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho mặt cầu (S) bán kính R = 5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8π  Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.

A. 323  cm3.

B. 603  cm3.

C. 203  cm3.

D. 963  cm3.

Xem giải thích câu trả lời
34. Nhiều lựa chọn
1 điểmKhông giới hạn

Gọi S=a;b là tập tất cả các giá trị của tham số thực m để phương trình log2mx6x3+log1214x2+29x2=0 có 3 nghiệm phân biệt. Khi đó hiệu H = b - a bằng

A. 52

B. 12

C. 23

D. 53

Xem giải thích câu trả lời
35. Nhiều lựa chọn
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên của m để phương trình 2sin2x+3cos2x=m.3sin2x  có nghiệm?

A. 7

B. 4

C. 5

D. 6

Xem giải thích câu trả lời
36. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho dãy số un  thỏa mãn un=un1+6,  n2  và log2u5+log2u9+8=11. Đặt Sn=u1+u2+...+un.  Tìm số tự nhiên n nhỏ nhất thỏa mãn  Sn20172018.

A. 2587

B. 2590

C. 2593

D. 2584

Xem giải thích câu trả lời
37. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số fx=x4+4mx3+3m+1x2+1.  Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số có cực tiểu mà không có cực đại. Tính tổng các phần tử của tập S.

A. 1

B. 2

C. 6

D. 0

Xem giải thích câu trả lời
38. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp S.ABCD  có đáy ABCD là hình thoi cạnh a, BD = a. Cạnh bên  SA vuông góc với mặt đáy và SA=a62.   Tính góc giữa hai mặt phẳng (SBD) và (SCD)

A. 600

B. 1200

C. 450

D. 900

Xem giải thích câu trả lời
39. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầuS:x12+y12+z2=4  và một điểm M2;3;1.  Từ M kẻ được vô số các tiếp tuyến tới (S), biết tập hợp các tiếp điểm là đường tròn (C). Tính bán kính r của đường tròn (C).

A. r=233.

B. r=33.

C. r=23.

D. r=32.

Xem giải thích câu trả lời
40. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng  và đường thẳng d:x+11=y2=z1.  Gọi  là một đường thẳng chứa trong (P) cắt và vuông góc với d.  Vectơ u=a;1;b  một vectơ chỉ phương của . Tính tổng S = a+b

A. S = 1

B. S = 0

C. S = 2

D. S = 4

Xem giải thích câu trả lời
41. Nhiều lựa chọn
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên âm của m để hàm số y=x+5+1mx2  đồng biến trên 5;+?

A. 10

B. 8

C. 9

D. 11

Xem giải thích câu trả lời
42. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y=x33x2  có đồ thị (C) và điểm Mm;4.  Hỏi có bao nhiêu số nguyên m thuộc đoạn 10;10 sao cho qua M có thể kẻ được ba tiếp tuyến đến (C).

A. 20

B. 15

C. 17

D. 12

Xem giải thích câu trả lời
43. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho F(x) là một nguyên hàm của hàm số fx=1+x1x  trên tập và thỏa mãn F1=3; F-1=2;F-2=4;Tính tổng T=F0+F2+F3.

A. 8

B. 12

C. 14

D. 10

Xem giải thích câu trả lời
44. Nhiều lựa chọn
1 điểmKhông giới hạn

Có bao nhiêu giá trị của m để giá trị nhỏ nhất của hàm số fx=e2x4ex+m trên đoạn 0;ln4  bằng 6 ?  

A. 3

B. 4

C. 1

D. 2

Xem giải thích câu trả lời
45. Nhiều lựa chọn
1 điểmKhông giới hạn

Hàm số f(x)có đạo hàm f ' (x) trên  Hình vẽ bên là đồ thị của hàm số f ' (x) trên  Hỏi hàm số y=fx+2018  có bao nhiêu điểm cực trị ?

A. 5

B. 3

C. 2

D. 4

Xem giải thích câu trả lời
46. Nhiều lựa chọn
1 điểmKhông giới hạn

Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán (trong đó có hai quyển Toán T1 và Toán T2) thành một hàng ngang trên giá sách. Tính xác suất để mỗi quyển sách Tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển Toán T1 và Toán T2 luôn xếp cạnh nhau

A. 1210

B. 1600

C. 1300

D. 1450

Xem giải thích câu trả lời
47. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu   và hai điểm M4;4;2,N6;0;6.  Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E.

A. x2y+2z+8=0.

B. 2x+y2z9=0.

C. 2x+2y+z+1=0.

D. 2x-2y+z+9=0.

Xem giải thích câu trả lời
48. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là các điểm thuộc các cạnh AA’, BB’, CC’ sao cho AM=2MA',NB'=2NB,PC=PC'. Gọi V1,V2  lần lượt là thể tích của hai khối đa diện ABCMNP  và A’B’C’MNP. Tính tỉ số  V1V2.

A. V1V2=2.

B. V1V2=12.

C. V1V2=1.

D. V1V2=23.

Xem giải thích câu trả lời
49. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hai số phức z1,z2  thỏa mãn z13i+5=2iz21+2i=4.  Tìm giá trị lớn nhất của biểu thức T=2iz1+3z2.  

A. 313+16.

B. 313

C. 313+8.

D. 313+25.

Xem giải thích câu trả lời
50. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số f(x) có đạo hàm f ' (x) liên tục trên  và thỏa mãn f'x1;1  với x0;2.  Biết f0=f2=1.  Đặt I=02fxdx,  phát biểu dưới đây là ĐÚNG ?

A. I;0.

B. I0;1.

C. I1;+.

D. I0;1.

Xem giải thích câu trả lời
© All rights reserved VietJack