vietjack.com

Đề thi thử môn Toán THPT Quốc gia năm 2022 có lời giải (Đề 14)
Quiz

Đề thi thử môn Toán THPT Quốc gia năm 2022 có lời giải (Đề 14)

V
VietJack
ToánTốt nghiệp THPT2 lượt thi
50 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Hàm số nào sau đây đồng biến trên khoảng ;+

y=3+24x.

y=2ex.

y=32x.

y=3+23x.

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=2a,BC=a,SA=a3 và SA vuông góc với mặt đáy (ABCD). Thể tích V của khối chóp S.ABCD bằng

V=a33.

V=a333.

V=2a333.

V=2a33.

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị như hình vẽ là của hàm số nào trong các hàm số sau đây?

Đồ thị như hình vẽ là của hàm số nào trong các hàm số sau đây? (ảnh 1)

y=3x2+2x+1

y=x33x2+1

y=x33+x2+1

y=x4+3x2+1

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Chọn khẳng định sai. Trong một khối đa diện

mỗi mặt có ít nhất 3 cạnh.

mỗi cạnh của một khối đã diện là cạnh chung của đúng 2 mặt.

mỗi đỉnh là đỉnh chung của ít nhất 3 mặt.

hai mặt bất kì luôn có ít nhất một điểm chung.

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Tiệm cận ngang của đồ thị hàm số y=x+13x+2 là?

x=23

y=23

y=13

x=13

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Cho f(x), g(x) là các hàm số xác định và liên tục trên . Trong các mệnh đề sau, mệnh đề nào sai?

fxgxdx=fxdx.gxdx.

2fxdx=2fxdx

fx+gxdx=fxdx+gxdx

fxgxdx=fxdxgxdx

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị hàm số nào dưới đây có tiệm cận đứng?

y=x2x2+1.

y=x2+3x+2x1

y=x21x+1

y=x21

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu? 

y=x4+x2+3.

y=x4+x2+3.

y=x4-x2+3.

y=x4-x2+3.

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tọa độ điểm biểu diễn của số phức z=23i4i3+2i.

(-1; -4)

(1; 4)

(1; -4)

(-1; 4)

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Phần ảo của số phức z = 2 - 3i 

-3i

3

-3

3i

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Cho số phức z = 1 + 2i. Số phức liên hợp của z là 

z¯=1+2i

z¯=1-2i

z¯=2+i

z¯=1 - 2i

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Hàm số nào sau đây không đồng biến trên khoảng (-;+)

y=x3+1

y = x + 1

y=x2x1

y=x5+x310

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x = a, x = b (a < b). Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức. 

V=π2abfxdx.

V=2πabf2xdx.

V=π2abf2xdx.

V=πabf2xdx.

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Trong các hàm số sau, hàm số nào có một nguyên hàm là hàm số Fx=lnx? 

f(x) = x

fx=1x.

fx=x32.

f(x) = |x|

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Gọi R, S, V lần lượt là bán kính, diện tích mặt cầu và thể tích của khối cầu. Công thức nào sau đây sai?

S=4πR2.

S=πR2.

V=43πR3.

3V = S.R

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, đường thẳng đi qua điểm A(1; 4; -7) và vuông góc với mặt phẳng x+2y2z3=0 có phương trình là 

x11=y42=z+72.

x11=y42=z+72.

x11=y42=z72.

x+11=y+44=z77.

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho điểm M(3; 2; -1). Hình chiếu vuông góc của điểm M lên trục Oz là điểm:

M10;0;1.

M33;0;0

M40;2;0

M23;2;0.

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Giải bất phương trình 342x4>34x+1.  

S=5;+

S=;5

S=;1

S = (-1; 2)

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Tập xác định của hàm số y=x+22 

2;+

2;+

\2.

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P:z2x+3=0. Một vectơ pháp tuyến của (P) là: 

w=1;2;0

n=2;0;1

v=1;2;3

u=0;1;2

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Trong các mệnh đề sau, mệnh đề nào đúng? 

Hai khối chóp có hai đáy là hai đa giác bằng nhau thì thể tích bằng nhau.

Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.

Hai khối đa diện bằng nhau thì thể tích bằng nhau.

Hai khối đa diện có thể tích bằng nhau thì bằng nhau.

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình phẳng H giới hạn bởi các đường y=x;y=0;x=4. Diện tích S của hình phẳng H bằng 

S = 3

S=154.

S=163.

S=173.

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz, cho các điểm M1;2;3;N3;4;7. Tọa độ của véc-tơ MN là 

(-2; -2; -4)

(4; 6; 10)

(2; 3; 5)

(2; 2; 4)

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối lăng trụ có diện tích đáy bằng a2 và khoảng cách giữa hai đáy bằng 3a. Tính thể tích V của khối lăng trụ đã cho. 

V=3a3

V=32a3

V=9a3

V=a3

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Đẳng thức nào sau đây đúng với mọi số dương x?

logx'=xln10.

logx'=ln10x.

logx'=1xln10.

logx'=xln10.

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tập xác định D của hàm số y=log2x23x+2. 

D=;12;+.

D=2;+

D=;1

D = (1; 2)

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho hai điểm I(1; 0; -1) và A(2; 2; -3). Mặt cầu (S) tâm I và đi qua điểm A có phương trình là 

x+12+y2+z12=3.

x+12+y2+z12=9.

x12+y2+z+12=9.

x12+y2+z+12=3.

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho đường thẳng d:x=12ty=2+3tz=3,t. Tọa độ một vectơ chỉ phương của d 

(2; 3; 0)

(-2; 3; 3)

(1; 2; 3)

(-2; 3; 0)

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai số thực dương a và b. Rút gọn biểu thức A=a13b+b13aa6+b6. 

A=ab3

A=ab6

1ab3

1ab6

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình: log33x2=3 có nghiệm là

x=293

x = 87

x=113

x=253

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Tìm họ nguyên hàm của hàm số fx=x2x+1x1.

x+1x1+C.

1+1x12+C

x22+lnx1+C

x2+lnx1+C

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Tích phân 02dxx+3 bằng

16225

log53

ln53

215

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Cho số phức z=a+bi,a,b thỏa mãn z1zi=1 z3iz+i=1. Tính P = a + b.

P = 2

P = 1

P = -1

P = 7

Xem đáp án
34. Trắc nghiệm
1 điểmKhông giới hạn

Tìm giá trị lớn nhất của hàm số y=x32x27x+1 trên đoạn [-2; 1]

4

3

6

5

Xem đáp án
35. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối chóp S.ABCD có đáy là hình bình hành, có thể tích bằng 24cm3. Gọi E là trung điểm SC. Một mặt phẳng chứa AE cắt các cạnh SB và SD lần lượt tại M và N. Tìm giá trị nhỏ nhất của thể tích khối chóp S.AMEN. 

9cm3.

8cm3.

6cm3.

7cm3.

Xem đáp án
36. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm Aa;0;0,B0;b;0,C0;0;c, trong đó a>0,b>0,c>0. Mặt phẳng (ABC) đi qua điểm I(1; 2; 3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?

a2+b=c6.

a + b + c = 12

a + b + c = 18

a + b - c = 6

Xem đáp án
37. Trắc nghiệm
1 điểmKhông giới hạn

Hàm số y=x+m3+x+n3x3 (tham số m, n) đồng biến trên khoảng ;+. Giá trị nhỏ nhất của biểu thức P=4m2+n2mn bằng 

116

-16

14

4

Xem đáp án
38. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy là hình chữ nhật AB = 3, AD = 2. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho.

V=10π3.

V=20π3.

V=16π3.

V=32π3.

Xem đáp án
39. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A2;3;7,B0;4;3 và C(4; 2; 5). Biết điểm Mx0;y0;z0 nằm trên mp (Oxy) sao cho MA+MB+MC có giá trị nhỏ nhất. Khi đó tổng P=x0+y0+z0 bằng

P = 0

P = 6

P = 3

P = -3

Xem đáp án
40. Trắc nghiệm
1 điểmKhông giới hạn

Cho bất phương trình: 1+log5x2+1log5mx2+4x+m 1. Tìm tất cả các giá trị của m để (1) được nghiệm đúng với mọi số thực x

2<m3.

3m7.

2m3.

m3;m7.

Xem đáp án
41. Trắc nghiệm
1 điểmKhông giới hạn

Biết số phức z thỏa mãn z34i=5 và biểu thức T=z+22zi2 đạt giá trị lớn nhất. Tính |z|.

z=33.

z=52.

z=50.

z=10.

Xem đáp án
42. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) liên tục trên  thỏa 02021fxdx=2. Khi đó tích phân 0e20211xx2+1flnx2+1dx bằng

4

3

1

2

Xem đáp án
43. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a,BC=a3. Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc 300. Tính thể tích V của khối chóp S.ABCD theo a.

V=26a33.

V=2a33.

V=3a3.

V=3a33.

Xem đáp án
44. Trắc nghiệm
1 điểmKhông giới hạn

Tổng bình phương các giá trị của tham số m để đường thẳng d:y=xm cắt đồ thị C:y=x2x1 tại hai điểm phân biệt A, B với AB=10 là 

5

10

13

17

Xem đáp án
45. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) liên tục trên  có đồ thị y = f(x) như hình vẽ bên. Phương trình f(2 - f(x)) = 0 có tất cả bao nhiêu nghiệm phân biệt.

Cho hàm số f(x) liên tục trên R có đồ thị y = f(x) như hình vẽ bên. Phương trình (ảnh 1)

6

5

7

4

Xem đáp án
46. Trắc nghiệm
1 điểmKhông giới hạn

Giả sử a, b là các số thực sao cho x3+y3=a.103z+b.102z đúng với mọi các số thực dương x, y, z thỏa mãn

log(x + y) = z logx2+y2=z+1. Giá trị của a + b bằng 

312

312

292

252

Xem đáp án
47. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(5; 0; 0) và B(3; 4; 0). Với C là điểm nằm trên trục Oz, gọi H là trực tâm của tam giác ABC. Khi C di động trên trục Oz thì H luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng                    

3

32

52

54

Xem đáp án
48. Trắc nghiệm
1 điểmKhông giới hạn

Biết 04xlnx2+9dx=aln5+bln3+c, trong đó a, b, c là các số nguyên. Giá trị của biểu thức T = a + b + c là 

T = 11

T = 10

T = 9

T = 8

Xem đáp án
49. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=mx+22x+m,m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (0; 1). Tìm số phần tử của S.   

3

5

1

2

Xem đáp án
50. Trắc nghiệm
1 điểmKhông giới hạn

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng 8m, chiều cao 12,5m. Diện tích của cổng là: 

2003m2.

100m2.

1003m2.

200m2.

Xem đáp án
© All rights reserved VietJack