vietjack.com

Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 23)
Quiz

Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 23)

A
Admin
50 câu hỏiToánTốt nghiệp THPT
50 CÂU HỎI
1. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong hình vẽ bên, điểm P biểu diễn số phức z1, điểm Q biểu diễn số phức z2. Tìm số phức z=z1+z2.

A. 1+3i 

B. -3+i  

C. -1+2i

D. 2+i  

Xem giải thích câu trả lời
2. Nhiều lựa chọn
1 điểmKhông giới hạn

Giả sử f(x) và g(x) là các hàm số bất kỳ liên tục trên R và a, b, c là các số thực. Mệnh đề nào sau đây sai?

A. abfxdx+bcfxdx+cafxdx=0

B. abcfxdx=cabfxdx

C. abfxgxdx=abfxdx.abgxdx

D. abfxgxdx+abgxdx=abfxdx  

Xem giải thích câu trả lời
3. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có tập xác định và bảng biến thiên như hình vẽ

Mệnh đề nào sau đây sai về hàm số đã cho?

A. Giá trị cực đại bằng 2. 

B. Hàm số có 2 điểm cực tiểu. 

C. Giá trị cực tiểu bằng –1.

D. Hàm số có 2 điểm cực đại.  

Xem giải thích câu trả lời
4. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho cấp số cộng (un) có u1 = -1, u4 = 4. Số hạng u6

A. 8

B. 6

C. 10

D. 12  

Xem giải thích câu trả lời
5. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho đường thẳng Δ vuông góc với mặt phẳng (α): x+2z+3=0. Một vectơ chỉ phương của Δ là

A. b=2;1;0

B. v=1;2;3

C. a=1;0;2 

D. u=2;0;1  

Xem giải thích câu trả lời
6. Nhiều lựa chọn
1 điểmKhông giới hạn

Tính đạo hàm của hàm số y=3xe+log21x.

A. y'=e3xe11xln2

B. y'=3e3xe11x

C. y'=3xeln3x1xln2

D. y'=3e3xe11xln2  

Xem giải thích câu trả lời
7. Nhiều lựa chọn
1 điểmKhông giới hạn

Tất cả các nguyên hàm của hàm số f(x) = sin5x

A. 15cos5x+C

B. cos5x+C

C. cos5x+C

D. 15cos5x+C  

Xem giải thích câu trả lời
8. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đồng biến trên khoảng nào sau đây?

A. (2;4) 

B. (0;3)  

C. (2;3)

D. (-1;4)  

Xem giải thích câu trả lời
9. Nhiều lựa chọn
1 điểmKhông giới hạn

Đường cong ở hình bên là đồ thị của hàm số nào dưới đây?

A. y=x35x2+8x1

B. y=x36x2+9x+1

C. y=x3+6x29x1

D. y=x36x2+9x1  

Xem giải thích câu trả lời
10. Nhiều lựa chọn
1 điểmKhông giới hạn

Giả sử [0;1] là các số thực dương tùy ý thỏa mãn a2b3=44. Mệnh đề nào sau đây đúng?

A. 2log2a3log2b=8

B. 2log2a+3log2b=8

C. 2log2a+3log2b=4

D. 2log2a3log2b=4   

Xem giải thích câu trả lời
11. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, mặt phẳng nào trong các mặt phẳng sau song song với trục Oz?

A. α:z=0

B. P:x+y=0

C. Q:x+11y+1=0  

D. β:z=1    

Xem giải thích câu trả lời
12. Nhiều lựa chọn
1 điểmKhông giới hạn

Nghiệm của phương trình 2x3=12 là

A. 0

B. 2

C. -1

D. 1  

Xem giải thích câu trả lời
13. Nhiều lựa chọn
1 điểmKhông giới hạn

Mệnh đề nào sau đây sai?

A. Số tập con có 4 phần tử của tập 6 phần tử là C64

B. Số cách xếp 4 quyển sách vào 4 trong 6 vị trí ở trên giá là A64

C. Số cách chọn và xếp thứ tự 4 học sinh từ nhóm 6 học sinh là C64  

D. Số cách xếp 4 quyển sách trong 6 quyển sách vào 4 vị trí trên giá là A64  

Xem giải thích câu trả lời
14. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho F(x) là nguyên hàm của fx=1x+2 thỏa mãn F(2)=4. Giá trị F(-1) bằng

A. 3  

B. 1

C. 23  

D. 2   

Xem giải thích câu trả lời
15. Nhiều lựa chọn
1 điểmKhông giới hạn

Biết tập hợp nghiệm của bất phương trình 2x<322x là khoảng (a;b). Giá trị a+b bằng

A. 3

B. 0  

C. 2  

D. 1  

Xem giải thích câu trả lời
16. Nhiều lựa chọn
1 điểmKhông giới hạn

Đồ thị hàm số y=x22x+xx1 có bao nhiêu đường tiệm cận?

A. 3

B. 0  

C. 2

D. 1  

Xem giải thích câu trả lời
17. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong hệ trục tọa độ Oxyz, cho đường thẳng d: x12=y31=z11 cắt mặt phẳng (P): 2x-3y+z-2=0 tại điểm I(a;b;c). Khi đó a+b+c bằng

A. 9

B. 5

C. 3

D. 7  

Xem giải thích câu trả lời
18. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đạo hàm f'x=xx+1x22 với mọi x. Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-1;2] là

A. f(-1)  

B. f(0)  

C. f(3)  

D. f(2)  

Xem giải thích câu trả lời
19. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho đường thẳng Δ: x1=y2=z1 và mặt phẳng (α): x-y+2z=0. Góc giữa đường thẳng Δ và mặt phẳng (α) bằng

A. 30°  

B. 60°

C. 150°

D. 120°  

Xem giải thích câu trả lời
20. Nhiều lựa chọn
1 điểmKhông giới hạn

Tính thể tích V của vật thể giới hạn bởi hai mặt phẳng x=0 và x=4, biết rằng khi cắt bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (0<x<4) thì được thiết diện là nửa hình tròn có bán kính R=x4x.

A. V=643

B. V=323

C. V=64π3

D. V=32π3  

Xem giải thích câu trả lời
21. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho số thực a > 2, gọi z1, z2 là hai nghiệm phức của phương trình z2-2z+a=0. Mệnh đề nào sau đây sai?

A. z1+z2 là số thực

B. z1-z2 là số ảo

C. z1z2+z2z1 là số ảo

D. z1z2+z2z1 là số thực  

Xem giải thích câu trả lời
22. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho các số thực a, b thỏa mãn 1 < a < b và logab+logba2=3. Tính giá trị của biểu thức T=logaba2+b2

A. 16 

B. 32  

C. 6

D. 23   

Xem giải thích câu trả lời
23. Nhiều lựa chọn
1 điểmKhông giới hạn

Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số fx=13x3x213x+1 và trục hoành như hình vẽ bên. Mệnh đề nào sau đây sai?

A. S=11fxdx13fxdx

B. S=213fxdx

C. S=211fxdx

D. S=13fxdx  

Xem giải thích câu trả lời
24. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, mặt cầu có tâm I(1;2;-3) và tiếp xúc với trục Oy có bán kính bằng

A. 10

B. 2

C. 5  

D. 13   

Xem giải thích câu trả lời
25. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình nón đỉnh S có đường sinh bằng 2, đường cao bằng 1. Tìm đường kính của mặt cầu chứa điểm S và chứa đường tròn đáy hình nón đã cho.

A. 4

B. 2

C. 1  

D. 23  

Xem giải thích câu trả lời
26. Nhiều lựa chọn
1 điểmKhông giới hạn

Cắt mặt xung quanh của một hình trụ dọc theo một đường sinh rồi trải ra trên một mặt phẳng ta được hình vuông có chu vi bằng 8π. Thể tích của khối trụ đã cho bằng

A. 2π2.

B. 2π3.

C. 4π.

D. 4π2.  

Xem giải thích câu trả lời
27. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho các số phức z1, z2 thỏa mãn z1=z2=3 và z1z2=2. Môđun z1+z2 bằng

A. 2

B. 3

C. 2

D. 22  

Xem giải thích câu trả lời
28. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=2a2, tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với ABCD. Tính theo a thể tích V của khối chóp S.ABCD.

A. V=6a312

B. V=6a33  

C. V=6a34

D. V=6a36  

Xem giải thích câu trả lời
29. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho đường thẳng  đi qua điểm M(1;2;3) và có vectơ chỉ phương là u=2;4;6. Phương trình nào sau đây không phải là của đường thắng Δ?

A. x=52ty=104tz=156t

B. x=2+ty=4+2tz=6+3t

C. x=1+2ty=2+4tz=3+6t

D. x=3+2ty=6+4tz=12+6t

Xem giải thích câu trả lời
30. Nhiều lựa chọn
1 điểmKhông giới hạn

Đạo hàm của hàm số là fx=log2xx.

A. f'x=1lnxx2

B. f'x=1lnxx2ln2

C. f'x=1log2xx2ln2

D. f'x=1log2xx2   

Xem giải thích câu trả lời
31. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x). Hàm số y’ = f’(x) có bảng biến thiên như hình vẽ bên. Hàm số g(x)=f(x)-x có bao nhiêu điếm cực trị?

A. 3

B. 2

C. 0

D. 1  

Xem giải thích câu trả lời
32. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) liên tục, nhận giá trị dương trên R và có bảng xét dấu đạo hàm như hình bên. Hàm số y=logxf2x đồng biến trên khoảng

A. 1;2

B. ;1

C. 1;0

D. 1;1  

Xem giải thích câu trả lời
33. Nhiều lựa chọn
1 điểmKhông giới hạn

Gọi S là tập hợp các số nguyên m sao cho tồn tại 2 số phức phân biệt z1, z2 thỏa mãn đồng thời các phương trình z1=zi và z+2m=m+1. Tổng các phần tử của S

A. 1

B. 4

C. 2

D. 3  

Xem giải thích câu trả lời
34. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AB với AB=BC=a, AD=2a, SAABCD, SA=a. Tính theo a khoảng cách giữa hai đường thẳng S.ABC.

A. a66

B. a62

C. a63  

D. a33    

Xem giải thích câu trả lời
35. Nhiều lựa chọn
1 điểmKhông giới hạn

Người ta sản xuất một vật lưu niệm (N) bằng thủy tinh trong suốt có dạng khối tròn xoay mà thiết kế qua trục của nó là một hình thang cân (xem hình vẽ). Bên trong (N) có hai khối cầu ngũ sắc với bán kính lần lượt là R=3cm, r=1cm tiếp xúc với nhau và cùng tiếp xúc với mặt xung quanh của (N), đồng thời hai khối cầu lần lượt tiếp xúc với hai mặt đáy của (N). Tính thể tích của vật lưu niệm đó

A. 485π6cm3

B. 81πcm3

C. 72πcm3

D. 7289πcm3  

Xem giải thích câu trả lời
36. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số f(x) liên tục trên có f(0)=0 và đồ thị hàm số y=f’(x) như hình vẽ bên. Hàm số y=3fxx3 đồng biến trên khoảng

A. 2;+

B. ;2

C. 0;2

D. 1;3  

Xem giải thích câu trả lời
37. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho số thực m và hàm số y = f(x) có đồ thị như hình vẽ bên. Phương trình f2x+2x=m có nhiều nhất bao nhiêu nghiệm phân biệt thuộc đoạn [-1;2]?

A. 2

B. 3

C. 4

D. 5  

Xem giải thích câu trả lời
38. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho tam giác ABC có A(0;0;1), B(-3;2;0), C(2;-2;3). Đường cao kẻ từ B của tam giác ABC đi qua điểm nào trong các điểm sau?

A. P1;2;2

B. M1;3;4

C. 0;3;2

D. 5;3;3  

Xem giải thích câu trả lời
39. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong Lễ tổng kết Tháng thanh niên, có 10 đoàn viên xuất sắc gồm 5 nam và 5 nữ được tuyên dương khen thưởng. Các đoàn viên này được sắp xếp ngẫu nhiên thành một hàng ngang trên sân khấu để nhận giấy khen. Tính xác suất để trong hàng ngang trên không có bất kì 2 bạn nữ nào đứng cạnh nhau

A. 17   

B. 142  

C. 5252  

D. 25252    

Xem giải thích câu trả lời
40. Nhiều lựa chọn
1 điểmKhông giới hạn

Giả sử m là số thực thỏa mãn giá trị nhỏ nhất của hàm số fx=31x+3x+mx trên R là 2. Mệnh đề nào sau đây đúng?

A. m10;5

B. m5;0  

C. m0;5

D. m5;10  

Xem giải thích câu trả lời
41. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số f(x) = x4-2x2+m (m là tham số thực). Gọi S là tập hợp tất cả các giá trị nguyên của m thuộc đoạn [-20;20] sao cho max0;2fx<3min0;2fx. Tổng các phân tử của S bằng

A. 63 

B. 51  

C. 195  

D. 23   

Xem giải thích câu trả lời
42. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số f(x) nhận giá trị dương và có đạo hàm f’(x) liên tục trên [0;1] thỏa mãn f1=e.f0 và 01dxf2x+01f'x2dx2. Mệnh đề nào sau đây đúng?

A. f1=2ee1

B. f1=2e2e1

C. f1=2e2e21

D. f1=2e2e1  

Xem giải thích câu trả lời
43. Nhiều lựa chọn
1 điểmKhông giới hạn

Một biển quảng cáo có dạng hình Elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Người ta chia Elip bởi Parabol có đỉnh B1, trục đối xứng B1B2, và đi qua các điểm M, N. Sau đó sơn phần tô đậm với giá 200.000 đồng/ m2 và trang trí đèn Led phần còn lại với giá 500.000 đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A1A2=4M, B1B2=2m, MN=2m.

A. 2.341.000 đồng.

B. 2.057.000 đồng.

C. 2.760.000 đồng.

D. 1.664.000 đồng.  

Xem giải thích câu trả lời
44. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ.

Tìm tất cả các giá trị m để phương trình f3x2+2x+32x2+2=m có nghiệm.

A. 4m2

B. m>4

C. 2<m<4

D. 2m4   

Xem giải thích câu trả lời
45. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên:

Bất phương trình fx<3ex+2+m nghiệm đúng với mọi x2;2 khi và chỉ khi

A. mf23

B. m>f23e4

C. mf23e4

D. m>f23   

Xem giải thích câu trả lời
46. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho tam giác ABC vuông tại A, ABC^=30°, BC=32, đường thẳng BC có phương trình x41=y51=z+74 đường thẳng AB nằm trong mặt phẳng (α): x+z-3=0. Biết đỉnh C có cao độ âm. Tính hoành độ của đỉnh A.

A. 32

B. 3

C. 92   

D. 52   

Xem giải thích câu trả lời
47. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hai số thực x, y thay đổi thỏa mãn ex4y+1x2ey2+1x2y=y2x4giá trị lớn nhất của biểu thức P=x3+2y22x2+8yx+2 ab với a, b là các số nguyên dương và ab là phân số tối giản. Tính S=a+b.

A. S=85

B. S=31

C. S=75  

D. S=41   

Xem giải thích câu trả lời
48. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, AC=a3, SAB là tam giác đều, SAD^=120°. Tính thể tích của khối chóp SABCD.

A. a33

B. 3a332

C. a36

D. 2a333  

Xem giải thích câu trả lời
49. Nhiều lựa chọn
1 điểmKhông giới hạn

Có bao nhiêu số nguyên m để phương trình 9.32xm4x2+2x+14+3m+3.3x+1=0 có đúng 3 nghiệm phân biệt?

A. Vô số

B. 3

C. 1

D. 2  

Xem giải thích câu trả lời
50. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho các số phức zw thỏa mãn 2+iz=zw+1i. Tìm giá trị lớn nhất của T=w+1i.

A. 423

B. 23  

C. 223  

D. 2   

Xem giải thích câu trả lời
© All rights reserved VietJack