4 CÂU HỎI
Phương trình nào sau đây không phải là phương trình bậc nhất hai ẩn?
\(x + 0y = - 2.\)
\(\frac{x}{2} - \frac{y}{3} = 1.\)
\(0x - 2y = 3.\)
\(\frac{1}{x} + 2y = - 3.\)
Sau khi thực hiện các bước giải hệ phương trình \(\left\{ \begin{array}{l}2x + y = 1\\ - 4x - 2y = - 2\end{array} \right.\) theo phương pháp cộng đại số, bạn An được phương trình \(0x = 0.\) Bạn An cần viết kết luận về nghiệm của hệ phương trình như nào?
Vậy hệ phương trình vô nghiệm.
Vậy hệ phương trình có nghiệm duy nhất là \(\left( {0;\,\,1} \right)\).
Vậy hệ phương trình có vô số nghiệm. Nghiệm tổng quát của hệ được viết là \(\left( {x;\,\,2x - 1} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Vậy hệ phương trình có vô số nghiệm. Nghiệm tổng quát của hệ được viết là \(\left( {x;\,\,1 - 2x} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Cho tam giác \(MNP\) vuông tại \(M\). Khi đó \(\cos \widehat {MNP}\) bằng
\(\frac{{MN}}{{NP}}\).
\(\frac{{MP}}{{NP}}\).
\(\frac{{MN}}{{MP}}\).
\(\frac{{MP}}{{MN}}\).
Cho \(\alpha \) và \(\beta \) là hai góc nhọn bất kì thỏa mãn \(\alpha + \beta = 90^\circ .\) Khẳng định nào sau đây là đúng?
\(\tan \alpha = \sin \beta .\)
\(\tan \alpha = \cot \beta .\)
\(\tan \alpha = \cos \beta .\)
\(\tan \alpha = \tan \beta .\)