vietjack.com

Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (đề 25)
Quiz

Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (đề 25)

V
VietJack
ToánTốt nghiệp THPT3 lượt thi
50 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm \[A\left( {1; - 1;2} \right)\] và có một vectơ pháp tuyến \[\vec n = \left( {2;2; - 1} \right).\] Phương trình của (P) là

\[2x + 2y - z - 6 = 0.\]

\[2x + 2y - z + 2 = 0.\]

\[2x + 2y - z + 6 = 0.\]

\[2x + 2y - z - 2 = 0.\]

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây (ảnh 1)

\[y = \frac{{ - x - 1}}{{x - 1}}\]

\[y = \frac{{x + 1}}{{x - 1}}\]

\[y = \frac{{ - x + 1}}{{x + 1}}\]

\[y = \frac{{x - 1}}{{x + 1}}\]

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Trong mặt phằng cho 10 điểm phân biệt. Số vectơ khác \[\overrightarrow 0 \], có điểm đầu và điểm cuối lấy trong các điểm đã cho là

\[{2^{10}}\]

\[A_{10}^2\]

\[10!\]

\[C_{10}^2\]

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\]\[f\left( 1 \right) - f\left( 0 \right) = 2\]. Tính \[I = \int\limits_0^1 {\left[ {f'\left( x \right) - {e^x}} \right]dx} \].

\[1 - e\]

\[1 + e\]

\[3 - e\]

\[3 + e\]

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Tập nghiệm của bất phương trình \[{3^{2x - 1}} > 27\] là:

\[\left( {3; + \infty } \right).\]

\[\left( {\frac{1}{3}; + \infty } \right).\]

\[\left( {\frac{1}{2}; + \infty } \right).\]

\[\left( {2; + \infty } \right).\]

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối nón (N) có bán kính đáy bằng r, chiều cao bằng h và đường sinh bằng l. Đẳng thức nào dưới đây đúng?

\[\frac{1}{{{l^2}}} = \frac{1}{{{h^2}}} + \frac{1}{{{r^2}}}\]

\[{h^2} = {l^2} + {r^2}\]

\[{r^2} = {h^2} + {l^2}\]

\[{l^2} = {h^2} + {r^2}\]

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai số phức \[{z_1} = 1 + i\]\[{z_2} = 2 - 3i.\] Tìm số phức liên hợp của số phức \[w = {z_1} + {z_2}.\]

\[\bar w = 3 + 2i.\]

\[\bar w = - 1 + 4i.\]

\[\bar w = 1 - 4i.\]

\[\bar w = 3 - 2i.\]

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối chóp S.ABC có đáy là tam giác đều cạnh a. Cạnh bên SA vuông góc với mặt đấy và \[SC = a\sqrt 3 \]. Thể tích của khối chóp đã cho bằng

\[\frac{{\sqrt 6 {a^3}}}{4}\]

\[\frac{{\sqrt 6 {a^3}}}{{12}}\]

\[\frac{{\sqrt 3 {a^3}}}{6}\]

\[\frac{{\sqrt 3 {a^3}}}{3}\]

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in \mathbb{R}} \right)\] có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây sai?

Cho hàm số y=ax^3+bx^2+cx+d (a,b,c,d thuộc R)  có đồ thị như hình vẽ bên (ảnh 1)

Hàm số đạt cực tiểu tại \[x = 1\].

Hàm số đạt cực đại tại \[x = - 1\].

Cực đại của hàm số là 4.

Cực tiểu của hàm số là 1.

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, hình chiếu vuông góc của điểm \[A\left( { - 3; - 1;0} \right)\] trên mặt phẳng \[\left( {Oyz} \right)\] có tọa độ là

\[\left( {0;0; - 3} \right)\]

\[\left( {0; - 3;0} \right)\]

\[\left( {0;0; - 1} \right)\]

\[\left( {0; - 1;0} \right)\]

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Cho dãy số \[\left( {{u_n}} \right)\] thỏa mãn \[{u_1} = - 2\] \[{u_{n + 1}} = {u_n} + 3,\forall n \ge 1\]. Tính \[{u_{12}}\].

31.

25.

34.

28.

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Họ nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2}}}{{\sqrt {{x^3} + 1} }}\]

\[\frac{1}{{3\sqrt {{x^3} + 1} }} + C\]

\[\frac{2}{3}\sqrt {{x^3} + 1} + C\]

\[\frac{2}{{3\sqrt {{x^3} + 1} }} + C\]

\[\frac{1}{3}\sqrt {{x^3} + 1} + C\]

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và điểm \[A\left( {1;2;0} \right)\], phương trình đường thẳng qua A và vuông góc với (P) là

\[\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{z}{1}.\]

\[\frac{{x - 1}}{1} = \frac{{y + 2}}{2} = \frac{z}{2}.\]

\[\frac{{x - 1}}{{ - 2}} = \frac{{y - 2}}{1} = \frac{z}{1}.\]

\[\frac{{x - 1}}{{ - 2}} = \frac{{y - 2}}{1} = \frac{z}{1}.\]

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Cho a là số thực dương khác 1. Tính \[P = {\log _{{a^2}}}a\].

\[P = 2\]

\[P = - \frac{1}{2}\]

\[P = \frac{1}{2}\]

\[P = - 2\]

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = - \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {4m - 8} \right)x + 2\] nghịch biến trên toàn trục số?

9.

7.

Vô số.

8.

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in \mathbb{R}} \right)\] có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình \[2f\left( {\left| x \right|} \right) - m = 0\] có đúng bốn nghiệm thực phân biệt.

Cho hàm số f(x)=ax^3+bx^2+cx+d (a,b,c,d thuộc R)  có đồ thị như hình vẽ bên (ảnh 1)

\[1 < m < 3\]

\[ - 1 < m < 3\]

\[ - 2 < m < 6\]

\[2 < m < 6\]

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Tập hợp điểm biểu diễn số phức z biết \[\left| {z - \left( {3 - 4i} \right)} \right| = 2.\]

Đường tròn có tâm \[I\left( {3; - 4} \right);R = 2.\]

Đường tròn tâm\[I\left( { - 3;4} \right);R = 2.\]

Đường tròn có tâm \[I\left( { - 3;4} \right);R = 4.\]

Đường tròn có tâm \[I\left( {3; - 4} \right);R = 4.\]

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Hàm số \[y = {\log _2}\left( {{x^2} - 2x} \right)\] đồng biến trên

\[\left( {1; + \infty } \right).\]

\[\left( { - \infty ;0} \right).\]

\[\left( {0; + \infty } \right).\]

\[\left( {2; + \infty } \right).\]

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Giá trị nhỏ nhất của hàm số \[y = \frac{1}{4}{x^4} + {x^3} - 2{x^2}\] trên đoạn \[\left[ { - 3;3} \right]\] bằng

\[ - \frac{3}{4}\]

\[ - \frac{{99}}{4}\]

\[ - 32\]

\[ - \frac{{75}}{4}\]

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = \left( {3 - x} \right)\left( {{x^2} - 1} \right) + 2x,\forall x \in \mathbb{R}\]. Hỏi hàm số \[y = f\left( x \right) - {x^2} - 1\] có bao nhiêu điểm cực tiểu?

2.

3.

4.

1.

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Cho \[{\log _a}x = 2,{\log _b}x = 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{a}{{{b^2}}}}}x.\]

\[P = - 6.\]

\[P = \frac{1}{6}.\]

\[P = - \frac{1}{6}.\]

\[P = 6\]

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 3a, SA vuông góc với đáy, \[SB = 5a\]. Tính sin của góc giữa cạnh SC và mặt đáy \[\left( {ABCD} \right)\].

\[\frac{{2\sqrt 2 }}{3}.\]

\[\frac{{3\sqrt 2 }}{4}.\]

\[\frac{{3\sqrt {17} }}{{17}}.\]

\[\frac{{2\sqrt {34} }}{{17}}.\]

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Một khối đồ chơi gồm một khối hình trụ (T) gắn chồng lên một khối hình nón (N), lần lượt có bán kính đáy và chiều cao tương ứng là \[{r_1},{h_1},{r_2},{h_2}\] thỏa mãn \[{r_2} = 2{r_1},{h_1} = 2{h_2}\] (hình vẽ). Biết rằng thể tích của khối nón (N) bằng \[20{\rm{c}}{{\rm{m}}^{\rm{3}}}\]. Thể tích của toàn bộ khối đồ chơi bằng

Một khối đồ chơi gồm một khối hình trụ (T) gắn chồng lên một khối hình nón (N) (ảnh 1)

\[140{\rm{c}}{{\rm{m}}^3}\]

\[120{\rm{c}}{{\rm{m}}^3}\]

\[30{\rm{c}}{{\rm{m}}^3}\]

\[50{\rm{c}}{{\rm{m}}^3}\]

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Số nghiệm của phương trình \[{\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\] là:

2.

3.

0.

1.

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối lăng trụ đứng \[ABC.A'B'C'\] có đáy ABC là tam giác vuông cân tại \[A,BC = 2\sqrt 2 \]. Góc giữa mặt phẳng \[AB'\] và mặt phẳng \[\left( {BCC'B'} \right)\] bằng \[30^\circ \]. Thể tích của lăng trụ đã cho bằng

Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại  (ảnh 1)

12

4

\[4\sqrt 2 \]

\[6\sqrt 2 \]

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} + 2x + 4y - 2z - 3 = 0\] có bán kính bằng

\[\sqrt 3 \]

1.

3.

9.

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz cho \[A\left( {1; - 1;2} \right);\;B\left( {2;1;1} \right)\] và mặt phẳng \[\left( P \right):x + y + z + 1 = 0\]. Mặt phẳng (Q) chứa \[A,B\] và vuông góc với mặt phẳng (P). Mặt phẳng (Q) có phương trình là

\[ - x + y = 0.\]

\[3x - 2y - z + 3 = 0.\]

\[x + y + z - 2 = 0.\]

\[3x - 2y - z - 3 = 0.\]

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \[y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}\] có ba đường tiệm cận.

\[m < 1.\]

\[m \ne 1\]\[m \ne - 8.\]

\[m \le 1\]\[m \ne - 8.\]

\[m < 1\]\[m \ne - 8.\]

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng \[x = 0\]\[x = 2\sqrt 3 ,\] biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \[x\left( {0 \le x \le 2\sqrt 3 } \right)\] thì thiết diện là một hình tam giác đều có cạnh là \[x\sqrt 2 .\]

\[V = 12.\]

\[V = 12\pi .\]

\[V = 6\sqrt 2 .\]

\[V = 6\sqrt 2 \pi .\]

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Tìm hệ số của số hạng chứa \[{x^3}\] trong khai triển biểu thức \[P = {x^2}{\left( {2x + 1} \right)^{10}} - {\left( {x - 2} \right)^8}\]

\[1812.\]

\[2752.\]

\[1772.\]

\[ - 1772.\]

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho hai đường thẳng \[{d_1}:\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 2}}{{ - 1}};{d_2}:\frac{{x - 1}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 1}}\]. Đường thẳng \[\Delta \] đi qua điểm \[A\left( {1;2;3} \right)\] vuông góc với đường thẳng \[{d_1}\] và cắt đường thẳng \[{d_2}\] có phương trình là

\[\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{1}.\]

\[\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 3}}.\]

\[\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 5}}.\]

\[\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{4}.\]

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai số phức \[{z_1}\]\[{z_2}\] thỏa mãn \[\left| {{z_1}} \right| = 3,\left| {{z_2}} \right| = 4;\left| {{z_1} - {z_2}} \right| = \sqrt {41} .\] Xét các số phức \[z = \frac{{{z_1}}}{{{z_2}}} = a + bi{\mkern 1mu} \left( {a,b \in \mathbb{R}} \right).\] Khi đó \[\left| b \right|\] bằng

\[\frac{{\sqrt 3 }}{8}.\]

\[\frac{{3\sqrt 3 }}{8}.\]

\[\frac{{\sqrt 2 }}{4}.\]

\[\frac{{\sqrt 5 }}{4}.\]

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau

Cho hàm số y=f(x)có đạo hàm liên tục trên R và có bảng biến  (ảnh 1)

Hàm số \[y = f\left( {{x^2} - 2x} \right)\] nghịch biến trên khoảng nào dưới đây?

\[\left( { - \infty ;0} \right)\]

\[\left( {0;1} \right)\]

\[\left( {2; + \infty } \right)\]

\[\left( {1;2} \right)\]

Xem đáp án
34. Trắc nghiệm
1 điểmKhông giới hạn

Họ nguyên hàm của hàm số \[f\left( x \right) = x\left( {1 + 2\sin x} \right)\]

\[{x^2} - \left( {2x - 2} \right)\sin x + C.\]

\[{x^2} - 2x.\cos x + 2\sin x + C.\]

\[\frac{1}{2}{x^2} + 2x.\cos x - 2\sin x + C.\]

\[\frac{1}{2}{x^2} - 2x.\cos x + 2\sin x + C.\]

Xem đáp án
35. Trắc nghiệm
1 điểmKhông giới hạn

Cho f(x) là hàm số chẵn, liên tục trên đoạn \[\left[ { - 1;1} \right]\]\[\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4\]. Kết quả \[I = \int\limits_{ - 1}^1 {\frac{{f\left( x \right)}}{{1 + {e^x}}}dx} \] bằng

\[I = 8\]

\[I = 4\]

\[I = 2\]

\[I = \frac{1}{4}\]

Xem đáp án
36. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10;10} \right]\] để bất phương trình sau nghiệm đúng \[\forall x \in \mathbb{R}:{\left( {6 + 2\sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {3 - \sqrt 7 } \right)^x} - \left( {m + 1} \right){2^x} \ge 0\]?

10.

9.

12.

11

Xem đáp án
37. Trắc nghiệm
1 điểmKhông giới hạn

Cắt hình trụ (T) bằng một mặt phẳng đi qua trục được thiết diện là một hình chữ nhật có diện tích bằng \[30{\mkern 1mu} c{m^2}\] và chu vi bằng \[26{\mkern 1mu} cm\]. Biết chiều dài của hình chữ nhật lớn hơn đường kính mặt đáy của hình trụ (T). Diện tích toàn phần của (T) là:

\[23\pi \left( {c{m^2}} \right).\]

\[\frac{{23\pi }}{2}\left( {c{m^2}} \right).\]

\[\frac{{69\pi }}{2}\left( {c{m^2}} \right).\]

\[69\pi \left( {c{m^2}} \right).\]

Xem đáp án
38. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có đạo hàm, liên tục trên \[\mathbb{R}\], gọi \[{d_1},{d_2}\] lần lượt là tiếp tuyến của đồ thị hàm số \[y = f\left( x \right)\]\[y = {x^2}f\left( {2x - 1} \right)\] tại điểm có hoành độ bằng 1. Biết rằng hai đường thẳng \[{d_1},{d_2}\] vuông góc nhau, khẳng định nào sau đây đúng?

\[\sqrt 2 < \left| {f\left( 2 \right)} \right| < 2.\]

\[\left| {f\left( 2 \right)} \right| \le \sqrt 3 .\]

\[\left| {f\left( 1 \right)} \right| \ge \sqrt 2 .\]

\[2 \le \left| {f\left( 2 \right)} \right| < 2\sqrt 3 .\]

Xem đáp án
39. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với đáy, mặt bên \[\left( {SCD} \right)\] hợp với đáy một góc bằng \[60^\circ \], M là trung điểm của BC. Biết thể tích khối chóp S.ABCD bằng \[\frac{{{a^3}\sqrt 3 }}{3}\]. Khoảng cách từ M đến mặt phẳng \[\left( {SCD} \right)\] bằng

\[\frac{{a\sqrt 3 }}{6}\]

\[a\sqrt 3 \]

\[\frac{{a\sqrt 3 }}{4}\]

\[\frac{{a\sqrt 3 }}{2}\]

Xem đáp án
40. Trắc nghiệm
1 điểmKhông giới hạn

Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật \[v\left( t \right) = 10t - {t^2},\] trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, \[v\left( t \right)\] được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là

\[v = 7\left( {m/p} \right).\]

\[v = 9\left( {m/p} \right).\]

\[v = 5\left( {m/p} \right).\]

\[v = 3\left( {m/p} \right).\]

Xem đáp án
41. Trắc nghiệm
1 điểmKhông giới hạn

Cho mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} \right)x + \left( {2 - m} \right)y + 2\left( {m + 1} \right)z - 6\left( {m + 2} \right) = 0.\] Biết rằng khi m thay đổi, mặt cầu (S) luôn chứa một đường tròn cố định. Tọa độ tâm I của đường tròn đó là

\[I\left( {1;2;1} \right).\]

\[I\left( { - 1; - 2; - 1} \right).\]

\[I\left( {1;2; - 1} \right).\]

\[I\left( { - 1; - 2;1} \right).\]

Xem đáp án
42. Trắc nghiệm
1 điểmKhông giới hạn

Biết phương trình \[{x^4} + a{x^3} + b{x^2} + cx + d = 0,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (a,b,c,d \in \mathbb{R})\] nhận \[{z_1} = - 1 + i,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {z_2} = 1 + i\sqrt 2 \] là nghiệm. Tính \[a + b + c + d.\]

10.

9.

−7.

0.

Xem đáp án
43. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) có đạo hàm xác định, liên tục \[\left[ {0;1} \right]\] đồng thời thỏa mãn các điều kiện \[f'\left( 0 \right) = - 1\] \[{\left[ {f'\left( x \right)} \right]^2} = f''\left( x \right)\]. Đặt \[T = f\left( 1 \right) - f\left( 0 \right)\], hãy chọn khẳng định đúng?

\[ - 2 \le T < - 1.\]

\[ - 1 \le T < 0.\]

\[0 \le T < 1.\]

\[1 \le T < 2.\]

Xem đáp án
44. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] liên tục trên tập số thực và có đồ thị như hình vẽ. Biết \[f\left( { - 1} \right) = \frac{{13}}{4},f\left( 2 \right) = 6\]. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[g\left( x \right) = {f^3}\left( x \right) - 3f\left( x \right)\] trên \[\left[ { - 1;2} \right]\] bằng

Cho hàm sốy=f(x)có đạo hàm f'(x) Hàm số (ảnh 1)

\[\frac{{1573}}{{64}}.\]

\[198.\]

\[\frac{{37}}{4}.\]

\[\frac{{14245}}{{64}}.\]

Xem đáp án
45. Trắc nghiệm
1 điểmKhông giới hạn

Cho các số thực \[a,b > 1\] và phương trình \[{\log _a}\left( {ax} \right).{\log _b}\left( {bx} \right) = 2020\] có hai nghiệm phân biệt m và n. Tìm giá trị nhỏ nhất của biểu thức \[P = \left( {4{a^2} + 9{b^2}} \right)\left( {36{m^2}{n^2} + 1} \right).\]

144.

72.

36.

288.

Xem đáp án
46. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( {{S_1}} \right)\] có tâm \[{I_1}\left( {1;0;1} \right),\;\] bán kính \[{R_1} = 2\] và mặt cầu \[\left( {{S_2}} \right)\] có tâm \[{I_2}\left( {1;3;5} \right),\] bán kính \[{R_2} = 1.\] Đường thẳng d thay đổi nhưng luôn tiếp xúc với \[\left( {{S_1}} \right),\;\left( {{S_2}} \right)\] lần lượt tại A và B. Gọi \[M,\;m\] lần lượt là giá trị lớn nhất và nhỏ nhất của đoạn AB. Tính giá trị của \[P = M.m\]

\[P = 2\sqrt 6 .\]

\[P = 8\sqrt 5 .\]

\[P = 4\sqrt 5 .\]

\[P = 8\sqrt 6 .\]

Xem đáp án
47. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số đa thức bậc ba \[y = f\left( x \right)\] có đồ thị như hình bên. Tìm tất cả các giá trị của tham số m để hàm số \[y = \left| {f\left( x \right) + m} \right|\] có ba điểm cực trị.

Cho hàm số đa thức bậc ba y=f(x) có đồ thị như hình bên (ảnh 1)

\[m \le - 1\] hoặc\[m \ge 3.\]

\[m \le - 3\] hoặc\[m \ge 1.\]

\[m = - 1\] hoặc \[m = 3.\]

\[1 \le m \le 3.\]

Xem đáp án
48. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình lăng trụ đứng \[{\mkern 1mu} ABCD.A'B'C'D'\] có đáy là hình thoi có cạnh \[4a\], \[A'A = 8a\], \[\widehat {BAD} = {120^{0.}}\]. Gọi \[M,N,K\] lần lượt là trung điểm cạnh \[AB',B'C,BD'\]. Thể tích khối da diện lồi có các đỉnh là các điểm \[A,B,C,M,N,K\] là:

\[12\sqrt 3 {\mkern 1mu} {a^3}\]

\[\frac{{28\sqrt 3 }}{3}{\mkern 1mu} {a^3}\]

\[16\sqrt 3 {\mkern 1mu} {a^3}\]

\[\frac{{40\sqrt 3 }}{3}{\mkern 1mu} {a^3}\]

Xem đáp án
49. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x), \[y = f\left[ {f\left( {2x - 3} \right)} \right]\] \[y = f\left( {{x^3} + x + 2} \right)\] lần lượt có các đồ thị \[{C_1},{C_2},{C_3}.\] Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của \[{C_1}\]\[y = x + 3\], phương trình tiếp tuyến tại điểm có hoành độ bằng 2 của \[{C_2}\]\[y = 8x + 5.\] Viết phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của đồ thị \[{C_3}.\]

\[y = 4x + 5.\]

\[y = 16x + 5.\]

\[y = 20x - 5.\]

\[y = 24x - 7.\]

Xem đáp án
50. Trắc nghiệm
1 điểmKhông giới hạn

Một hộp chứa  4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng một quả cầu màu đỏ và không quá hai quả cầu màu vàng.

\[\frac{{37}}{{91}}.\]

\[\frac{{16}}{{91}}.\]

\[\frac{2}{{91}}.\]

\[\frac{5}{{13}}.\]

Xem đáp án
© All rights reserved VietJack