8 CÂU HỎI
Giả sử một công việc có thể được thực hiện theo một trong ba phương án. Phương án A có 3 cách thực hiện, phương án B có 4 cách thực hiện, phương án C có 7 cách thực hiện (các cách thực hiện của cả ba phương án là khác nhau đôi một). Số cách thực hiện công việc đó là:
A. 14 cách;
B. 19 cách;
C. 84 cách;
D. 31 cách.
Giả sử một công việc được chia thành ba công đoạn. Công đoạn A có 8 cách thực hiện; ứng với mỗi cách đó có 3 cách thực hiện công đoạn B; ứng với mỗi cách thực hiện công đoạn A và mỗi cách thực hiện công đoạn B có 6 cách thực hiện công đoạn C. Khi đó số cách thực hiện công việc đã cho là:
A. 17 cách;
B. 26 cách;
C. 30 cách;
D. 144 cách.
Cho tập hợp A có n phần tử (n ≥ 1) và số nguyên k (1 ≤ k ≤ n). Phát biểu nào sau đây sai?
A. Một chỉnh hợp chập k của n phần tử trên là mỗi cách lấy k phần tử của tập A và sắp xếp chúng theo một thứ tự;
B. Một hoán vị của tập A là mỗi cách sắp xếp n phần tử của tập A theo một thứ tự;
C. Một tổ hợp chập k của n phần tử là mỗi cách lấy k phần tử của A;
D. Mỗi hoán vị của n phần tử cũng chính là tổ hợp chập n của n phần tử đó.
Cho n ≥ 1, n ∈ ℤ và 1 ≤ k ≤ n. Phát biểu nào sau đây sai?
A. P0 = 1;
B. ;
C. ;
D. .
Cho tập hợp X gồm n phần tử (n ≥ 1) và số nguyên k (1 ≤ k ≤ n). Một chỉnh hợp chập k của n phần tử là:
A. Một kết quả bất kì của sự sắp xếp k phần tử bất kì của tập hợp X;
B. Một kết quả của việc lấy k phần tử từ n phần tử của tập X và sắp xếp chúng theo một thứ tự nào đó;
C. Một số được tính bởi công thức: n(n – 1)(n – 2)…(n – k + 1);
D. Một kết quả của việc lấy k phần tử từ n phần tử của tập X.
Biểu thức bằng:
A. (x + y)4;
B. (x – y)4;
C. (x + y)5;
D. (x – y)5.
Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (m + 2n)5 bằng
A. 4;
B. 5;
C. 6;
D. 7.
Số hạng tử trong khai triển (a+ b)99 bằng
A. 97;
B.98;
C. 99;
D. 100.