5 CÂU HỎI
Phương trình đường tròn đi qua ba điểm M(-2; 4); N(5; 5); P(6; -2) là:
A. x2 + y2 – 4x – 2y – 20 = 0;
B. x2 + y2 – 2x – 2y – 7 = 0;
C. x2 + y2 + 4x – 2y – 14 = 0;
D. x2 + y2 + 2x – 2y + 11 = 0.
Cho tam giác ABC có A(1; 1), B(1; – 3), C(– 5; 9). Bán kính đường tròn nội tiếp tam giác ABC gần với giá trị:
A. 694;
B. 26;
C. 27;
D. 695.
Cho đường thẳng d: 2x – y – 5 = 0 và hai điểm A(1; 2) và B(4; 1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A, B
A. (x + 1)2 + (y + 3)2 = 25;
B. (x – 1)2 + (y – 3)2 = 5;
C. (x – 1)2 + (y + 3)2 = 5;
D. (x – 1)2 + (y + 3)2 = 25.
Viết phương trình tiếp tuyến ∆ của đường tròn (C) : x2 + y2 – 2x + 4y + 4 = 0 . Biết rằng tiếp tuyến vuông góc với đường thẳng x + 2y + 5 = 0
A. 2x + 5 y + = 0 và 2x + 5 y = 0;
B. 2x – 5 y + = 0 và 2x – 5 y = 0;
C. 2x – 5 y + = 0 và 2x – 5 y = 0;
D. 2x – 5 y − = 0 và 2x – 5 y = 0.
Trong hệ toạ độ Oxy, cho ba đường thẳng d: x − 6y − 10 = 0; d1 : 3x + 4y + 5 = 0 và d2 : 4x – 3y – 5 = 0. Phương trình đường tròn (C) có tâm thuộc d ; và tiếp xúc với 2 đường thẳng d1 và d2 là:
A. (x − 10)2 + y2 = 49;
B. ;
C. (x − 10)2 + y2 = 49 và ;
D. (x + 10)2 + y2 = 49 và .