5 CÂU HỎI
Với giá trị nào của m thì đường thẳng ∆: 4x + 3y + m = 0 tiếp xúc với đường tròn (C): x2 + y2 – 9 = 0?
A. m = –3;
B. m = 3 hoặc m = –3;
C. m = 3;
D. m = 15 hoặc m = –15.
Cho đường tròn (C): x2 + y2 – 4x – 6y + 5 = 0. Đường thẳng d đi qua điểm A(3; 2) và cắt (C) theo một dây cung ngắn nhất có phương trình là:
A. 2x – y + 2 = 0;
B. x + y – 1 = 0;
C. x – y – 1 = 0;
D. x – y + 1 = 0.
Cho đường tròn (C): x2 + y2 + 2x – 6y + 5 = 0. Phương trình tiếp tuyến của (C) song song với đường thẳng d: x + 2y – 15 = 0 là:
A. x + 2y = 0 hoặc x + 2y – 10 = 0;
B. x – 2y = 0 hoặc x + 2y + 10 = 0;
C. x + 2y – 1 = 0 hoặc x + 2y – 3 = 0;
D. x – 2y – 1 = 0 hoặc x – 2y – 3 = 0.
Đường tròn (C) đi qua hai điểm A(1; 3), B(3; 1) và có tâm nằm trên đường thẳng d: 2x – y + 7 = 0 có phương trình là:
A. (x – 7)2 + (y – 7)2 = 102;
B. (x + 7)2 + (y + 7)2 = 164;
C. (x – 3)2 + (y – 5)2 = 25;
D. (x + 3)2 + (y + 5)2 = 25.
Cho đường cong (Cm): x2 + y2 + (m + 2)x – (m + 4)y + m + 1 = 0. Khi m thay đổi thì tâm của đường cong (Cm) luôn nằm trên đường thẳng nào sau đây:
A. x + y + 1 = 0;
B. x + y – 1 = 0;
C. x + y – 2 = 0;
D. x – y + 2 = 0.