vietjack.com

30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 23)
Quiz

30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 23)

V
VietJack
ToánTốt nghiệp THPT5 lượt thi
50 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Giá trị lớn nhất của hàm số y=x33x+5 trên đoạn 0;32 là:

3.

5.

7.

318

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Biết đồ thị hàm số y=2x1x+3 cắt trục Ox, Oy lần lượt tại hai điểm phân biệt A, B. Tính diện tích S của tam giác OAB.

S=112.

S=16.

S=3.

S=6.

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Đường cong trong hình bên là đồ thị của một trong bốn hàm số nào sau đây?

y=x4+2x2.

y=x42x2.

y=x2+2x.

y=x3+2x2x1.

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Rút gọn biểu thức P=x13.x6 với x>0 

P=x2

P=x

P=x18

P=x29

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Cho 03fxdx=a,23fxdx=b. Khi đó 02fxdx bằng:

-a - b

b - a

a + b

a - b

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đạo hàm f'x=x22x2x+23,x. Số điểm cực tri của hàm số là

1.

2.

3.

4.

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho A1;2;3,B3;2;9. Mặt phẳng trung trực của đoạn thẳng AB có phương trình là:

x+3x+10=0.

4x+12z10=0

x3y+10=0.

x3z+10=0.

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Cho a,b>0;  a,b1 và x, y là hai số thực dương. Trong các mệnh đề dưới đây, mệnh đề nào sai?

logaxy=logax+logay.

logba.logax=logbx.

loga1x=1logax.

logaxy=logaxlogay.

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Biết đồ thi ̣(C) của hàm số y=x22x+3x1 có hai điểm cực trị. Đường thẳng đi qua hai điểm cực tri ̣của đồ thi ̣(C) cắt trục hoành ta ̣i điểm M có hoành độ xM bằng:

xM=12.

xM=2.

xM=1.

xM=1+2.

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O  trên mặt phẳng (ABC). Mệnh đề nào sau đây đúng?

H là trọng tâm tam giác ABC.

Hlà trung điểm củaBC.

H là trực tâm của tam giác ABC.

Hlà trung điểm củaAC.

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp đều S.ABCD  có tất cả các cạnh đều bằng  a. Gọi M, N lần lượt là trung điểm của AD và SD. Số đo của góc giữa hai đường thẳng MN và SC.

450

600

300

900

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=3πx2+2x+3. Tìm khẳng định đúng.

Hàm số luôn đồng biến trên

Hàm số luôn nghịch biến trên

Hàm số luôn nghịch biến trên khoảng ;1.

Hàm số luôn đồng biến trên khoảng ;1.

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=xabx+c có đồ thị như hình vẽ bên. Tính giá trị của biểu thức P=a+b+c

P=-3

P=1

P=5

P=2

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Tổng tất cả các nghiệm thực của phương trình 2log4x3+log4x52=0 là

8.

8+2.

82.

4+2.

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tập nghiệm của bất phương trình 20172018x1>20172018x+3.

2;+.

;2.

2;+.

;2.

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Một người gửi tiết kiệm vào ngân hàng 200 triệu đồng theo thể thức lãi kép (tức là tiền lãi được cộng vào vốn của kỳ kế tiếp). Ban đầu người đó gửi với kỳ hạn 3 tháng, lãi suất 2,1%/kỳ hạn, sau 2 năm người đó thay đổi phương thức gửi, chuyển thành kỳ hạn 1 tháng với lãi suất 0,65%/tháng. Tính tổng số tiền lãi nhận được (làm tròn đến nghìn đồng) sau 5 năm.

98217000 đồng.

98215000 đồng.

98562000 đồng.

98560000 đồng.

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, gọi H hình chiếu vuông góc của M2;0;1 lên đường thẳng Δ:x11=y2=z21. Tìm tọa độ điểm  H.

H(2;2;3)

H(0;-2;1)

H(1;0;2)

H(-1;-4;0)

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Biết đồ thị (C) ở hình bên là đồ thị hàm số y=axa>0,a1. Gọi (C’) là đường đối xứng với (C) qua đường thẳng y=x

Hỏi (C’) là đồ thị của hàm số nào dưới đây?

y=log12x.

y=2x.

y=12x.

y=log2x.

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=f(x) xác định trên \1, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ.

Tìm tập hợp tất cả các giá trị thực của tham số  m  sao cho phương trình fx=m có ba nghiệm thực phân biệt.

2;1.

2;1.

1;1.

1;1.

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD); M, N là hai điểm nằm trên hai cạnh BC, CD. Đặt BM=x,  DN=y0<x,y<a. Hệ thức liên hệ giữa x và y để hai mặt phẳng (SAM) và (SMN) vuông góc với nhau là:

x2+a2=ax+2y.

x2+a2=ax+y.

x2+2a2=ax+y.

2x2+a2=ax+y.

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Tập xác định của hàm số y=tanπ2cosx là

\0.

\0;π.

\kπ2.

\kπ.

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Giải phương trình 2sin2x+3sin2x=3.

x=π3+kπ.

x=π3+kπ.

x=2π3+k2π.

x=π4+kπ.

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Khối mười hai mặt đều có bao nhiêu cạnh?

30 cạnh

12 cạnh

16 cạnh.

20 cạnh

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Một đám vi khuẩn tại ngày thứ x có số lượng là N(x) Biết rằng N'x=20001+x  và lúc đầu số lượng vi khuẩn là 5000 con. Vậy ngày thứ 12 số lượng vi khuẩn (sau khi làm tròn) là bao nhiêu con?

10130.

5130.

5154.

10132.

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Tìm hệ số của số hạng chứa x9 trong khai triển nhị thức Newton 1+2x3+x11.

4620.

1380.

9405.

2890.

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;-2;3). Phương trình mặt cầu tâm I và tiếp xúc với trục Oy là:

x12+y+22+z32=10.

x12+y+22+z32=9.

x12+y+22+z32=8.

x12+y+22+z32=16.

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Gọi A là tập các số tự nhiên có 6 chữ số đôi một khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4, 5. Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và chữ số 4 đứng cạnh nhau

425.

415.

825.

215.

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=x2x+3. Tìm khẳng định đúng.

Hàm số xác định trên \3.

Hàm số đồng biến trên \3.

Hàm số nghịch biến trên mỗi khoảng xác định.

Hàm số đồng biến trên mỗi khoảng xác định

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết AC=2a2 và ACB^=450. Diện tích toàn phần Stp của hình trụ (T) là

Stp=16πa2.

Stp=10πa2.

Stp=12πa2.

Stp=8πa2.

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Cho 12fx2+1xdx=2. Khi đó I=25fxdx bằng

2.

1.

-1.

4.

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Tìm nguyên hàm I=xcosxdx.

I=x2sinx2+C.

I=xsinx+cosx+C

I=xsinxcosx+C.

I=x2cosx2+C.

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Biết ab2x1dx=1. Khẳng định nào sau đây đúng?

ba=1.

a2b2=ab+1.

b2a2=ba+1.

ab=1.

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Một giải thi đấu bóng đá quốc gia có 16 đội thi đấu vòng tròn 2 lượt tính điểm. Hai đội bất kỳ đều đấu với nhau đúng 2 trận. Sau mỗi trận đấu, đội thắng được 3 điểm, đội thua 0 điểm, nếu hòa mỗi đội được 1 điểm. Sau giải đấu, Ban tổ chức thống kê được 80 trận hòa. Hỏi tổng số điểm của tất cả các đội sau giải đấu bằng bao nhiêu?

720.

560.

280.

640.

Xem đáp án
34. Trắc nghiệm
1 điểmKhông giới hạn

Số nghiệm thực của phương trình sin2x+1=0 trên đoạn 3π2;10π là

12.

11.

20.

21

Xem đáp án
35. Trắc nghiệm
1 điểmKhông giới hạn

Thể tích của khối cầu ngoại tiếp bát diện đều có cạnh bằng a là.

3πa33.

2πa32.

2πa33.

82πa33.

Xem đáp án
36. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng d có phương trình d:x12=y+11=z1. Phương trình của đường thẳng  đi qua điểm, M cắt và vuông góc với đường thẳng d là:

x21=y14=z2.

x21=y14=z2.

x21=y13=z2.

x23=y14=z2.

Xem đáp án
37. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng  đi qua điểm Mvà cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng (P) cắt  các trục tọa độ tại các điểm A,B,C. Tính thể tích khối chóp O.ABC.

13729.

6869.

5243.

3439.

Xem đáp án
38. Trắc nghiệm
1 điểmKhông giới hạn

Số các giá trị thực của tham số m để phương trình sinx12cos2x2m+1cosx+m=0 có đúng 4 nghiệm thực thuộc đoạn 0;2π là

1.

2.

3.

Vô số.

Xem đáp án
39. Trắc nghiệm
1 điểmKhông giới hạn

Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=x+216x4 là

3.

0.

2.

1.

Xem đáp án
40. Trắc nghiệm
1 điểmKhông giới hạn

Tập tất cả các giá trị của tham số m để hàm số y=lncosx+2mx+1 đồng biến trên  là

;13.

;13.

13;+.

13;+.

Xem đáp án
41. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC). Tính thể tích khối chóp S.ABC.

a3524.

a358.

a3324.

a3612.

Xem đáp án
42. Trắc nghiệm
1 điểmKhông giới hạn

Xét hàm số f(x) liên tục trên đoạn 0;1 và thỏa mãn 2fx+3f1x=1x2. Tính I=01fxdx.

π4.

π6.

π20.

π16.

Xem đáp án
43. Trắc nghiệm
1 điểmKhông giới hạn

Diện tích toàn phần của hình nón có khoảng cách từ tâm của đáy đến đường sinh bằng 3 và thiết diện qua trục là tam giác đều bằng

16π.

8π

20π

12π

Xem đáp án
44. Trắc nghiệm
1 điểmKhông giới hạn

Cho đa giác đều 100 đỉnh nội tiếp một đường tròn. Số tam giác tù được tạo thành từ 3 trong 100 đỉnh của đa giác là

44100.

78400.

117600.

58800.

Xem đáp án
45. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có các cạnh bên bằng nhau và bằng 2a, đáy là hình chữ nhật ABCD có AB=2a,AD=a. Gọi K là điểm thuộc BC sao cho 3BK+2CK=0. Tính khoảng cách giữa hai đường thẳng AD và SK.

2165a15.

165a15.

2135a15.

135a15.

Xem đáp án
46. Trắc nghiệm
1 điểmKhông giới hạn

Xét phương trình ax3x2+bx1=0 với a, b là các số thực, a0,  ab sao cho các nghiệm đều là số thực dương. Tìm giá trị nhỏ nhất của biểu thức P=5a23ab+2a2ba.

153.

82.

116.

123.

Xem đáp án
47. Trắc nghiệm
1 điểmKhông giới hạn

Cho tham số thực a. Biết phương trình exex=2cosax có 5 nghiệm thực phân biệt. Hỏi phương trình exex=2cosax+4 có bao nhiêu nghiệm thực phân biệt?

5.

6.

10.

11.

Xem đáp án
48. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) liên tục trên . Đồ thị của hàm số y=f '(x) như hình bên. Đặt gx=2fxx+12. Mệnh đề nào dưới đây đúng?

min3;3gx=g1.

max3;3gx=g1.

min3;3gx=g3.

Không tồn tại giá trị nhỏ nhất của g(x) trên 3;3.

Xem đáp án
49. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Biết thể tích khối chóp S.MNPQ là V, khi đó thể tích của khối chóp S.ABCD là

27V4.

922V.

9V4.

81V8.

Xem đáp án
50. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại A, AC=a, ACB^=600. Đường thẳng BC’ tạo với mặt phẳng (AA’C’C) góc 300.  Tính thể tích khối lăng trụ đã cho.

2a33.

a36.

a33.2

a33.3

Xem đáp án
© All rights reserved VietJack