vietjack.com

30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 19)
Quiz

30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 19)

A
Admin
50 câu hỏiToánTốt nghiệp THPT
50 CÂU HỎI
1. Nhiều lựa chọn
1 điểmKhông giới hạn

Tất cả các nguyên hàm của hàm số f(x)=cos 2x

A. sin2x+C

B. 12sin2x+C

C. 12sin2x+C

D. 2sin2x+C

Xem giải thích câu trả lời
2. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng Δ:x=2ty=1+tz=1

A. m2;1;1

B. v2;1;0

C. u2;1;1

D. n2;1;0

Xem giải thích câu trả lời
3. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong mặt phẳng Oxy, cho các điểm A, B như hình vẽ bên. Trung điểm của đoạn thẳng AB biểu diễn số phức

A. -1+2i

B. -12+2i

C. 2-i

D. 2-12i

Xem giải thích câu trả lời
4. Nhiều lựa chọn
1 điểmKhông giới hạn

Phương trình lnx2+1.lnx22018=0 có bao nhiêu nghiệm?

A. 1

B. 4

C. 3

D. 2

Xem giải thích câu trả lời
5. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho điểm M(1;2;3). Hình chiếu của M lên trục Oy là điểm

A. S(0;0;3)

B. R(1;0;0)

C. Q(0;2;0)

D. P(1;0;3)

Xem giải thích câu trả lời
6. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số xác định y = f(x) liên tục trên [-2;3] và có bảng xét dấu đạo hàm như hình bên. Mệnh đề nào sau đây đúng về hàm số đã cho?

A. Đạt cực tiểu tại x = -2                                 

B. Đạt cực tiểu tại x = 3

C. Đạt cực đại tại x = 0 

D. Đạt cực đại tại x = 1

Xem giải thích câu trả lời
7. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình phẳng (D) được giới hạn bởi các đường x=0, x=1, y=0 và y=2x+1. Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục OX được tính theo công thức

A. V=π012x+1dx

B. V=π012x+1dx

C. V=012x+1dx

D. V=012x+1dx

Xem giải thích câu trả lời
8. Nhiều lựa chọn
1 điểmKhông giới hạn

Đường cong ở hình bên là đồ thị của hàm số nào sau đây?

A. y=x43x2+1

B. y=x23x+1

C. y=x33x2+1

D. y=x4+3x+1

Xem giải thích câu trả lời
9. Nhiều lựa chọn
1 điểmKhông giới hạn

Giả sử a, b là các số thực dương bất kỳ. Mệnh đề nào sau đây sai?

A. log10ab2=21+loga+logb

B. log10ab2=2+2logab

C. log10ab2=1+loga+logb2

D. log10ab2=2+logab2

Xem giải thích câu trả lời
10. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho hai mặt phẳng α: x+2yz1=0 và β:2x+4ymz2=0.  Tìm m để hai mặt phẳng α và β song song với nhau.

A. m = 1

B. Không tồn tại m

C. m = -2

D. m = 2

Xem giải thích câu trả lời
11. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình hộp đứng ABCD.A'B'C'D' có cạnh bên AA'=h và diện tích của tam giác ABC bằng S. Thể tích của khối hộp ABCD.A'B'C'D' bằng

A. V=13Sh

B. V=23Sh

C. V=Sh

D. V=2Sh

Xem giải thích câu trả lời
12. Nhiều lựa chọn
1 điểmKhông giới hạn

Hàm số nào trong các hàm số dưới đây không liên tục trên R?

A. y=x

B. y=xx+1

C. y=sinx

D. y=xx+1

Xem giải thích câu trả lời
13. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình trụ có bán kính đáy bằng R, chiều cao bằng h. Biết rằng hình trụ đó có diện tích toàn phần gấp đôi diện tích xung quanh. Mệnh đề nào sau đây đúng?

A. h=2R

B. h=2R

C. R=h

D. R=2h

Xem giải thích câu trả lời
14. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho k, n k<n là các số nguyên dương. Mệnh đề nào sau đây sai?

A. Cnk=n!k!.nk!

B. Ank=n!.Cnk

C. Ank=k!.Cnk

D. Cnk=Cnnk

Xem giải thích câu trả lời
15. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

Mệnh đề nào sau đây đúng về hàm số đó?

A. Nghịch biến trên khoảng (-3;0)

B. Đồng biến trên khoảng (0;2)

C. Đồng biến trên khoảng (-1;0)

D. Nghịch biến trên khoảng (0;3)

Xem giải thích câu trả lời
16. Nhiều lựa chọn
1 điểmKhông giới hạn

Đồ thị hàm số y=x+1x21 có tất cả bao nhiêu tiệm cận đứng và tiệm cận ngang?

A. 4

B. 2

C. 1

D. 3

Xem giải thích câu trả lời
17. Nhiều lựa chọn
1 điểmKhông giới hạn

Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình x2+bx+2=0 có hai nghiệm phân biệt là

A. 12

B. 13

C. 56

D. 23

Xem giải thích câu trả lời
18. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho điểm M(1;0;-1). Mặt phẳng α đi qua M và chứa trục Ox có phương trình là

A. x + z = 0

B. y + z + 1 = 0

C. y = 0

D. x + y + z = 0

Xem giải thích câu trả lời
19. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB=AA'=a (tham khảo hình vẽ bên). Tính tang của góc giữa đường thẳng BC' và mặt phẳng (ABB'A').

A. 32

B. 22

C. 2

D. 63

Xem giải thích câu trả lời
20. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số fx=log32x+1. Giá trị của f '(0) bằng

A. 2ln3

B. 2

C. 2ln3

D. 0

Xem giải thích câu trả lời
21. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, tâm O, SO = a (tham khảo hình vẽ bên)

Khoảng cách từ O đến mặt phẳng (SCD) bằng

A. 2a2

B. 3a

C. 5a5

D. 6a3

Xem giải thích câu trả lời
22. Nhiều lựa chọn
1 điểmKhông giới hạn

Tích phân 01dx3x+1 bằng 

A. 32

B. 23

C. 13

D. 43

Xem giải thích câu trả lời
23. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đạo hàm f'x=x22x,x. Hàm số y=2fx đồng biến trên khoảng

A. (0;2)

B. (-2;0)

C. 2;+

D. -;-2

Xem giải thích câu trả lời
24. Nhiều lựa chọn
1 điểmKhông giới hạn

Giá trị nhỏ nhất của hàm số y=1+x+4x trên đoạn [-3;-1] bằng

A. -5

B. 5

C. -4

D. -6

Xem giải thích câu trả lời
25. Nhiều lựa chọn
1 điểmKhông giới hạn

Gọi z1,z2 là các nghiệm phức của phương trình z28z+25=0. Giá trị của z1z2 bằng

A. 6

B. 5

C. 8

D. 3

Xem giải thích câu trả lời
26. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho đường thẳng d:x11=y22=z31 và mặt phẳng α:x+yz2=0. Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng α, đồng thời vuông góc và cắt đường d?

A. Δ3:x53=y22=z51

B. Δ1:x+23=y+42=z+41

C. Δ2:x21=y42=z43

D. Δ4:x13=y12=z1

Xem giải thích câu trả lời
27. Nhiều lựa chọn
1 điểmKhông giới hạn

Có bao nhiêu số phức z thỏa mãn điều kiện z2=z2+z¯?

A. 4

B. 2

C. 3

D. 1

Xem giải thích câu trả lời
28. Nhiều lựa chọn
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên của m10;10 để hàm số y=m2x424m1x2+1 đồng biến trên khoảng 1;+?

A. 15

B. 7

C. 16

D. 6

Xem giải thích câu trả lời
29. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho khai triển 32x+x29=a0x18+a1x17+a2x16+...+a18. Giá trị của a15bằng

A. -804816

B. 218700

C. -174960

D. 489888

Xem giải thích câu trả lời
30. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho f(x) liên tục trên  và f2=16,01f2xdx=2. Tích phân 02xf'xdx bằng

A. 28

B. 30

C. 16

D. 36

Xem giải thích câu trả lời
31. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M, N lần lượt là trung điểm của AC và B'C' (tham khảo hình vẽ bên).

Khoảng cách giữa hai đường thẳng MN và B’D’ bằng

A. a5

B. 5a5

C. 3a

D. a3

Xem giải thích câu trả lời
32. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho P:y=x2A2;12. Gọi M là một điểm bất kì thuộc (P). Khoảng cách MA bé nhất là

A. 22

B. 54

C. 52

D. 233

Xem giải thích câu trả lời
33. Nhiều lựa chọn
1 điểmKhông giới hạn

Một viên gạch hoa hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch đế tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng

A. 8003cm2

B. 4003cm2

C. 250cm2

D. 800cm2

Xem giải thích câu trả lời
34. Nhiều lựa chọn
1 điểmKhông giới hạn

Người ta thả một viên billiards snooker có dạng hình cầu với bán kính nhỏ hơn 4,5 cm vào một chiếc cốc hình trụ đang chứa nước thì viên billiards đó tiếp xúc với đáy cốc và tiếp xúc với mặt nước sau khi dâng (tham khảo hình vẽ bên). Biết rằng bán kính của phần trong đáy cốc bằng 5,4 cm và chiều cao của mực nước ban đầu trong cốc bằng 4,5 cm. Bán kính của viên billiards đó bằng

A. 4,2 cm

B. 3,6 cm

C. 2,6 cm

D. 2,7 cm

Xem giải thích câu trả lời
35. Nhiều lựa chọn
1 điểmKhông giới hạn

Biết rằng a là số thực dương để bất phương trình ax9x+1 nghiệm đúng với mọi x. Mệnh đề nào sau đây đúng?

A. a104;+

B. a103;104

C. a0;102

D. a102;103

Xem giải thích câu trả lời
36. Nhiều lựa chọn
1 điểmKhông giới hạn

Gọi a là số thực lớn nhất để bất phương trình x2x+2+alnx2x+10 nghiệm đúng với mọi x. Mệnh đề nào sau đây đúng?

A. a6;7

B. a2;3

C. a6;5

D. a8;+

Xem giải thích câu trả lời
37. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông, AB = BC = a. Biết rằng góc giữa hai mặt phẳng (ACC') bằng (AB'C') (tham khảo hình vẽ bên). Thể tích của khối chóp B'.ACC'A' bằng

A. a33

B. a36

C. a32

D. 3a33

Xem giải thích câu trả lời
38. Nhiều lựa chọn
1 điểmKhông giới hạn

Giả sử z1,z2 là hai trong số các số phức z thỏa mãn iz+2i=1 và z1z2=2. Giá trị lớn nhất của z1+z2bằng

A. 3

B. 23

C. 32

D. 4

Xem giải thích câu trả lời
39. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho đồ thị C:x33x2. Có bao nhiêu số nguyên b10;10 để có đúng một tiếp tuyến của (C) đi qua điểm B(0;b)

A. 17

B. 9

C. 2

D. 16

Xem giải thích câu trả lời
40. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số f(x) thỏa mãn f'x2+fx.f''x=15x4+12x,xf0=f'0. Giá trị của f21 bằng

A. 4

B. 92

C. 10

D. 52

Xem giải thích câu trả lời
41. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho mặt phẳng α:xz3=0 và điểm M(1;1;1). Gọi A là điểm thuộc tia Oz, B là hình chiếu của A lên α. Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng

A. 31232

B. 63

C. 332

D. 33

Xem giải thích câu trả lời
42. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y = f '(x) được cho như hình vẽ bên. Hàm số y=f1x2+x nghịch biến trên khoảng

A. (2;4)

B. (-4;-2)

C. (-2;0)

D. (0;2)

Xem giải thích câu trả lời
43. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và f(0)+f(1)=0. Biết 01f2xdx=12,01f'xcosπdx=π2. Tính 01fxdx

A. 3π2

B. 2π

C. π

D. 1π

Xem giải thích câu trả lời
44. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng GMN và ABCD.

A. 23939

B. 1313

C. 36

D. 23913

Xem giải thích câu trả lời
45. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hàm số y = f(x) có đạo hàm f'x=x12x22x, với mọi x. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=fx28x+m có 5 điểm cực trị?

A. 16

B. 17

C. 15

D. 18

Xem giải thích câu trả lời
46. Nhiều lựa chọn
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên âm của a để đồ thị hàm số y=x3+a+10x2x+1 cắt trục hoành tại đúng một điểm?

A. 9

B. 8

C. 11

D. 10

Xem giải thích câu trả lời
47. Nhiều lựa chọn
1 điểmKhông giới hạn

Giả sử a, b là các số thực sao cho x3+y3=a.103z+b.102z đúng với mọi các số thực dương x, y, z thỏa mãn logx+y=z và logx2+y2=z+1. Giá trị của a+b bằng

A. -312

B. -252

C. 312

D. 292

Xem giải thích câu trả lời
48. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho hai điểm A10;6;2,B5;10;9 và mặt phẳng α:2x+2y+z12=0. Điểm M di động trên mặt phẳng  sao cho MA, MB luôn tạo với α các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn w cố định. Hoành độ của tâm đường tròn w bằng

A. 9/2

B. 2

C. 10

D. -4

Xem giải thích câu trả lời
49. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong không gian Oxyz, cho mặt phẳng α:2x+y2z2=0, đường thẳng d:x+11=y+22=z+32 và điểm A12;1;1. Gọi  là đường thẳng nằm trong mặt phẳng α, song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng  cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng

A. 73

B. 72

C. 212

D. 32

Xem giải thích câu trả lời
50. Nhiều lựa chọn
1 điểmKhông giới hạn

Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M0;10,N100;10 và P(100;0). Gọi S là tập hợp tất cả các điểm Ax; y,x, y nằm bên trong (kể cả trên cạnh) của OMNP. Lấy ngẫu nhiên một điểm Ax;yS. Xác suất để x+y90 bằng

A. 8451111

B. 473500

C. 169200

D. 86101

Xem giải thích câu trả lời
© All rights reserved VietJack