29 CÂU HỎI
Cho \[{\rm{a, b}} \in {\rm{R}}\] thỏa mãn\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {{\rm{(a + 5)}}{{\rm{x}}^{\rm{2}}} - {\rm{2(a + 2)x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}\]\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1 }}}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]. Tính giá trị của \[{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^2}\]
A.2
B.\[\frac{5}{2}\]
C.5
D.3
Cho đa thức P(x) thỏa mãn \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{{\rm{x}} - 3}} = 2\]. Tính \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{{\rm{x}}^2} - 9} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}}\]
A.\[\frac{1}{3}\]
B.\[\frac{1}{6}\]
C.\[\frac{1}{9}\]
D.\[\frac{2}{3}\]
Kết quả \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {2020{{\rm{x}}^2} + {\rm{x}} + 3} - \sqrt {2021{{\rm{x}}^2} + 2} } \right)\] bằng
A.\[ - \infty \]
B.\[ + \infty \]
C.0
D.1
Cho \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f(x)}} - 5}}{{{\rm{x}} - 4}} = 5\]. Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2} \right)\left( {\sqrt {6{\rm{f(x)}} + 6} + 4} \right)}}\]
A.-2
B.-1
C.2
D.3
Tính \[\mathop {\lim }\limits_{{\rm{x}} \to \frac{{\rm{\pi }}}{{\rm{4}}}} \frac{{\sin {\rm{x}} - \cos {\rm{x}}}}{{\tan \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)}}\]
A.\[ - \sqrt 2 \]
B.\[ + \sqrt 2 \]
C.−2
D.+2
Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a,b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b
A.0
B.1
C.-1
D.-2
Cho a, b là các số nguyên và\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx}} - {\rm{5}}}}{{{\rm{x}} - 1}} = 20\]. Tính \[{\rm{P = }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}\]
A.125
B.225
C.525
D.325
Cho hàm số \[{\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {{\rm{mx + 1}}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} \ne 0}\\{4{{\rm{x}}^2} + 5{\rm{n}}\,\,{\rm{khi}}\,\,{\rm{x}} = 0}\end{array}} \right.\left( {{\rm{m,n}} \in \mathbb{R}} \right)\] liên tục tại x0 = 0. Tìm hệ thức liên hệ giữa m và n
A.m = 2n
B.m = 5n
C.m = 10n
D.m = n
Chọn kết quả đúng trong các kết quả sau của \[\mathop {\lim }\limits_{{\rm{x}} \to {{\frac{{\rm{\pi }}}{{\rm{2}}}}^ + }} \left( {\frac{{\rm{\pi }}}{{\rm{2}}} - {\rm{x}}} \right).\tan {\rm{x}}\]
A.0
B.1
C.Không tồn tại
D.\(\infty \)
Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {{\rm{x}} + 5} - \sqrt {{\rm{x}} - 6} } \right)\] là
A.1
B.2
C.3
D.0
Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:
A.0
B.\( + \infty \)
C.\[\frac{{\rm{m}}}{{\rm{n}}}\]
D.\[\frac{{\rm{n}}}{{\rm{m}}}\]
Kết quả của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {5^ - }} \frac{{12 - {{\rm{x}}^2}}}{{5 - {\rm{x}}}}\] là:
A.\( - \infty \)
B.\( + \infty \)
C.0
D.1
Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {{{\left| {\rm{x}} \right|}^5} + {\rm{x}} + 1} \right)\]
A.\( + \infty \)
B.\( - \infty \)
C.\(\infty \)
D.0
Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {3^ - }} \frac{{3 - {\rm{x}}}}{{\sqrt {27 - {{\rm{x}}^3}} }}\]bằng:
A.34
B.0
C.35
D.53
Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to - 3} \left| {\frac{{ - {{\rm{x}}^2} - {\rm{x}} + 6}}{{{{\rm{x}}^2} + 3{\rm{x}}}}} \right|\]
A.\[\frac{3}{4}\]
B.\[\frac{5}{3}\]
C.\[\frac{3}{5}\]
D.\[\frac{3}{2}\]
Trong các mệnh đề sau đây mệnh đề nào là đúng?
A.\[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = \frac{1}{3}\]
B.\[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = - \frac{1}{3}\]
C.\[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = 0\]
D.Không tồn tại \[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = 0\]
Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]
A.
B.1
C.2
D.3
Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \sqrt {\frac{{\left( {{{\rm{x}}^2} + 3} \right){\rm{x}}}}{{{{\rm{x}}^3} - 1}}} \] bằng
A.\[\frac{2}{{\sqrt 2 }}\]
B.1
C.2
D.\[\frac{1}{{\sqrt 2 }}\]
Tính giới hạn của hàm số \[\mathop {\lim }\limits_{{\rm{x}} \to \infty } \frac{{{{\rm{x}}^3} + 3{{\rm{x}}^2} + 4}}{{2{{\rm{x}}^3}}}\]
A.1
B.2
C.\[\frac{2}{3}\]
D.\(\frac{1}{2}\)
Số M là giới hạn trái của hàm số y = f(x) tại x = x0 có kí hiệu là:
A.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]
B.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}^ - } {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]
C.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}^ + } {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]
D. \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]
Hàm số y = f(x) có giới hạn L khi \[{\rm{x}} \to {{\rm{x}}_0}\] có kí hiệu là:
A.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\]
B. \[\mathop {\lim }\limits_{{\rm{x}} \to \infty } {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\]
C. \[\mathop {\lim }\limits_{{\rm{x}} \to \pm \infty } {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\]
D.\[\mathop {\lim }\limits_{{\rm{x}} \to {\rm{L}}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = }}{{\rm{x}}_0}\]
Chọn đáp án đúng:
Giả sử \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\] thì:
A.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}}{\rm{.f}}\left( {\rm{x}} \right){\rm{ = c}}{\rm{.L}}\] với c là hằng số
B.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \sqrt {{\rm{f}}\left( {\rm{x}} \right)} {\rm{ = }}\sqrt {\rm{L}} \,\,\forall {\rm{L}} \in \mathbb{Z}\]
C.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}}{\rm{.f}}\left( {\rm{x}} \right){\rm{ = L}}\] với c là hằng số
D.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}}{\rm{.f}}\left( {\rm{x}} \right){\rm{ = c}}\]
Cho các giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = 1}},\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{g}}\left( {\rm{x}} \right){\rm{ = 4}}\].Tính\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + 2g}}\left( {\rm{x}} \right)} \right]\]
A.4
B.8
C.9
D.10
Tính giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {2 + {\rm{x}}} \right)\]
A.2
B.3
C.4
D.5
Chọn đáp án đúng:
Nếu \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}},\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{g}}\left( {\rm{x}} \right){\rm{ = M}}\]thì:
A.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L + M}}\]
B. \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L }}{\rm{. M}}\]
C. \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L}} - {\rm{M}}\]
D.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L}} + 3{\rm{M}}\]
Chọn đáp án sai:
A.\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{x}} = {{\rm{x}}_0}\]
B. \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}} = {\rm{c}}\], với c là hằng số
C.\[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } {\rm{c = c}}\], với c là hằng số
D.\[\mathop {\lim }\limits_{{\rm{x}} \to \pm \infty } {\rm{c}} = - {\rm{c}}\], với c là hằng số
Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:
A.13
B.\[\frac{5}{3}\]
C.0
D.2
Cho giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {36{{\rm{x}}^2} + 5{\rm{ax}} + 1} - 6{\rm{x}} + {\rm{b}}} \right) = \frac{{20}}{3}\] và đường thẳng
\[{\rm{\Delta }}:{\rm{y = ax + 6b}}\] đi qua điểm M(3;42) với \[{\rm{a, b}} \in \mathbb{R}\]. Giá trị của biểu thức \[{\rm{T = }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^2}\] là:
A.12
B.24
C.41
D.13
Cho a, b là các số dương. Biết \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + \sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}}} \right) = \frac{7}{{27}}\] Tìm giá trị lớn nhất của a. b
A.\[\frac{{18}}{{49}}\]
B.\[\frac{{49}}{{18}}\]
C.\[\frac{{18}}{{19}}\]
D.\[\frac{{19}}{{18}}\]