vietjack.com

(2023) Đề thi thử Toán THPT Liên Trường Nghê An có đáp án
Quiz

(2023) Đề thi thử Toán THPT Liên Trường Nghê An có đáp án

A
Admin
50 câu hỏiToánTốt nghiệp THPT
50 CÂU HỎI
1. Nhiều lựa chọn

Đạo hàm của hàm số y=πx là

A. y'=πxlnπ

B. y'=xπx1lnπ

C. y'=πxlnπ

D. y'=xπx1

2. Nhiều lựa chọn

Đồ thị của hàm số y=x2x+1 có đường tiệm cận đứng là

A. x = 2

B. x = -1

C. y = 1

D. y = -2

3. Nhiều lựa chọn

Cho hàm số y = f(x) có đạo hàm f'(x) = x(2 - x) . Số điểm cực trị của hàm số y = f(x) là

A. 0

B. 3

C. 1

D. 2

4. Nhiều lựa chọn

Cho hàm số y = f(x) xác định trên R và có bảng xét dấu đạo hàm như sau:

Cho hàm số y = f(x) xác định trên R và có bảng xét dấu đạo hàm như sau:  Khi đó hàm số y = f(x) đồng biến trên khoảng (ảnh 1)

Khi đó hàm số y = f(x) đồng biến trên khoảng

A. 1;+

B. ;2

C. (-1;2)

D. ;1

5. Nhiều lựa chọn

Một khối lăng trụ có diện tích đáy bằng B, chiều cao h. Thể tích khối lăng trụ đó bằng

A. 13Bh

B. Bh

C. 12Bh

D. 3Bh

6. Nhiều lựa chọn

Cho Fx=ex1dx. Trong các khẳng định sau, khẳng định nào đúng?

A. Fx=ex+C

B. Fx=ex+x+C

C. Fx=exx+C

D. Fx=ex+x+C

7. Nhiều lựa chọn

Số các tổ hợp chập k,k của một tập hợp có n phần tử n*,0kn là:

A. Cnk=n!k!

B. Cnk=n!k!nk!

C. Cnk=n!knk!

D. Cnk=n!nk!

8. Nhiều lựa chọn

Giá trị nhỏ nhất của hàm số y = 1 + x3 trên đoạn [1;2] bằng

A. 9

B. 1

C. 2

D. -7

9. Nhiều lựa chọn

Tập xác định D của hàm số y=x12023

A. D=\1

B. D=;1

C. D=

D. D=1;+

10. Nhiều lựa chọn

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? (ảnh 1)

A. y=x4+2x2+1

B. y=x3+3x+1

C. y=x42x2+1

D. y=x23x+1

11. Nhiều lựa chọn

Cho hàm số fx=3x2+1. Trong các khẳng định sau, khẳng định nào đúng?

A. fxdx=x33+x+C

B. fxdx=x3+x+C

C. fxdx=x3+C

D. fxdx=x3x+C

12. Nhiều lựa chọn

Nghiệm của phương trình 3x1=9

A. x = 1

B. x = -3

C. x = 0

D. x = 3

13. Nhiều lựa chọn

Tập nghiệm của bất phương trình logx11 là

A. 11;+

B. 1;+

C. 11;+

D. ;11

14. Nhiều lựa chọn

Trong không gian Oxyz, cho véc tơ OA=i+j+2k. Khi đó điểm A có toạ độ là

A. (1;-1;-2)

B. (-1;1;-2)

C. (-1;1;2)

D. (1;-1;2)

15. Nhiều lựa chọn

Cho cấp số cộng (un) có u1 = -2 và u2 = 1. Tìm công sai d.

A. d = -1

B. d = 3

C. d = 2

D. d = -3

16. Nhiều lựa chọn

Cho F(x)=sinx2dx. Biết Fπ=1. Mệnh đề nào dưới đây đúng?

A. F02;3

B. F04;2

C. F00;1

D. F02;0

17. Nhiều lựa chọn

Cho hình chóp S.ABC, đáy ABC là tam giác vuông tại C có AB = 2a, BC = a, cạnh bên SA vuông góc với đáy và SA=a3. Tính thể tích khối chóp S.ABC.

A. a3

B. 233a3

C. 3a3

D. 12a3

18. Nhiều lựa chọn

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hình chóp có đáy là hình thoi luôn có mặt cầu ngoại tiếp.

B. Hình lăng trụ đứng luôn có mặt cầu ngoại tiếp.

C. Hình chóp có đáy là hình thang cân luôn có mặt cầu ngoại tiếp.

D. Hình lăng trụ có đáy là hình chữ nhật luôn có mặt cầu ngoại tiếp.

19. Nhiều lựa chọn

Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) là đường cong ở hình bên dưới. Hàm số y = f(x) có bao nhiêu điểm cực trị? Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) là đường cong ở hình bên dưới. Hàm số y = f(x) có bao nhiêu điểm cực trị? (ảnh 1)

A. 3

B. 2

C. 0

D. 1

20. Nhiều lựa chọn

Cho khối chóp tứ giác có đáy là hình vuông và có thể tích V. Nếu tăng độ dài chiều cao của khối chóp đã cho lên gấp ba và giữ nguyên cạnh đáy của nó thì ta được khối chóp mới có thể tích bằng

A. V

B. 9V

C. 3V

D. V3

21. Nhiều lựa chọn

Cho các số thực a, b. Biểu thức A=log22a+log22b có giá trị bằng

A. a + b

B. ab

C. -ab

D. - a - b

22. Nhiều lựa chọn

Số nghiệm nguyên của bất phương trình log4x+6<22log4x bằng

A. 2

B. Vô số

C. 1

D. 0

23. Nhiều lựa chọn

Cho khối trụ có chiều cao h bằng bán kính đáy và thể tích V=27π. Tính chiều cao h của khối trụ đó.

B. h=323

C. h=33

D. h=333

24. Nhiều lựa chọn

Hình chóp S.ABCD có diện tích đáy ABCD bằng a2 và độ dài đường cao bằng 6a. Thể tích khối chóp S.ABCD bằng

A. 6a3

B. a3

C. 3a3

D. 2a3

25. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, gọi (S) là mặt cầu đi qua hai điểm A(-1;-2;4), B(2;1;2) và có tâm thuộc trục Oz. Bán kính của mặt cầu (S) là

A. R = 6

B. R=3

C. R=6

D. R = 3

26. Nhiều lựa chọn

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng (ảnh 1)

A. a

B. a24

C. 2a

D. a22

27. Nhiều lựa chọn

Cho hình nón có độ dài đường sinh bằng 6a và bán kính đáy bằng a. Diện tích xung quanh của hình nón đã cho bằng

A. 12πa2

B. 8πa2

C. 6πa2

D. 2πa2

28. Nhiều lựa chọn

Chọn khẳng định sai trong các khẳng định sau:

Trong một khối đa diện

A. mỗi mặt có ít nhất 3 cạnh.

B. mỗi đỉnh là đỉnh chung của ít nhất 3 mặt.

C. mỗi cạnh là cạnh chung của đúng 2 mặt.

D. hai mặt bất kì luôn có ít nhất một điểm chung.

29. Nhiều lựa chọn

Số đường tiệm cận của đồ thị hàm số y=1+x+4x2+5x là

A. 2

B. 0

C. 3

D. 1

30. Nhiều lựa chọn

Trên khoảng 0;+, đạo hàm của hàm số y=lnxex

A. y'=x1+x

B. y'=1xx

C. y'=1+xx

D. y'=x1x

31. Nhiều lựa chọn

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên dưới.

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên dưới.  Số nghiệm thực của phương trình f(x) = 1 là (ảnh 1) Số nghiệm thực của phương trình f(x) = 1 là

A. 2

B. 3

C. 1

D. 0

32. Nhiều lựa chọn

Tìm tất cả các giá trị thực của tham số m để hàm số y=x2+x+m13 có tập xác định là R

A. m14

B. m>14

C. m14

D. m<14

33. Nhiều lựa chọn

Cho hàm số y=x33x+m (m là tham số thực), thỏa mãn miny0;2=3. Mệnh đề nào dưới đây đúng?

A. 7 < m < 20

B. m > 20

C. -10 < m < 6

D. m < -10

34. Nhiều lựa chọn

Biết tổng các nghiệm của phương trình log24x+48=x+4 bằng a+blog23 với a;b. Tính 2a + b

A. 2a+b=8

B. 2a+b=5

C. 2a+b=9

D. 2a+b=6

35. Nhiều lựa chọn

Cho hàm số y = f(x) có đạo hàm f'x=x12x21. Hàm số y = f(x) nghịch biến trên khoảng

A. 1;+

B. (-1;1)

C. R

D. ;1 và 1;+

36. Nhiều lựa chọn

Cho hai hình vuông ABCD, ABEF nằm trong hai mặt phẳng vuông góc với nhau. M là tâm của hình vuông ABEF. Cosin góc giữa hai mặt phẳng (MCD), (EFCD) bằng

A. 255

B. 1010

C. 31010

D. 55

37. Nhiều lựa chọn

Có bao nhiêu giá trị nguyên của m để phương trình 2log2x3+2m+5logx32=2m có hai nghiệm x1,x2 thoả mãn x1<x2<5

A. 1

B. 4

C. 2

D. 4

38. Nhiều lựa chọn

Hội chợ Xuân ở thành phố Vinh có một dãy gồm 15 gian hàng lưu niệm liên tiếp nhau. Một doanh nghiệp X bốc thăm chọn ngẫu nhiên 4 gian hàng trong 15 gian hàng trên để trưng bày sản phẩm. Xác suất để trong 4 gian hàng chọn được của doanh nghiệp X có đúng 3 gian hàng kề nhau bằng

A. 44455

B. 455

C. 22455

D. 233

39. Nhiều lựa chọn

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x33x2m đạt số điểm cực trị nhiều nhất?

A. 5

B. 3

C. Vô số

D. 4

40. Nhiều lựa chọn

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.  Số nghiệm thực phân biệt của phương trình f[f(x) + 1] + 2 = 0 là (ảnh 1)

Số nghiệm thực phân biệt của phương trình ffx+1+2=0 là

A. 2

B. 6

C. 4

D. 3

41. Nhiều lựa chọn

Cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật với AB = 2a, BC = a. Biết A'AB^=900AA'=a5,CA'=2a2. Thể tích khối hộp ABCD.A'B'C'D' bằng

A. a3

B. 2a3

C. 3a3

D. 4a3

42. Nhiều lựa chọn

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2) có bảng biến thiên như bên dưới.

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 1) Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình 4+mx2.ffxm=0 có 5 phần tử bằng

A. 0

B. -3

C. -1

D. 2

43. Nhiều lựa chọn

Cho hai khối cầu có tổng diện tích bằng 80π tiếp xúc ngoài nhau và cùng tiếp xúc với mặt phẳng (P) lần lượt tại hai điểm A, B. Tính tổng thể tích của hai khối cầu đó biết AB=42.

A. 242π

B. 962π

C. 96π

D. 192π

44. Nhiều lựa chọn

Trong mặt phẳng (P) cho tam giác ABC có AB = 1, AC = 2, BAC^=60. Điểm S thay đổi thuộc đường thẳng đi qua A và vuông góc với (P), (S khác A). Gọi B1, C1 lần lượt là hình chiếu vuông góc của A trên SB, SC. Đường kính MN thay đổi của mặt cầu (T) ngoại tiếp khối đa diện ABCB1C1 và I là điểm cách tâm mặt cầu (T) một khoảng bằng ba lần bán kính. Tính giá trị nhỏ nhất của IM + IN.

A. 63

B. 20

C. 6

D. 210

45. Nhiều lựa chọn

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi α là mặt phẳng đi qua CD’ và tạo với mặt phẳng (A'B'C'D') một góc φ với tanφ=52. Mặt phẳng α chia khối lặp phương thành hai khối đa diện có thể tích là V1,V2 với V1>V2. Tính V1.

A. V1=712a3

B. V1=1017a3

C. V1=724a3

D. V1=1724a3

46. Nhiều lựa chọn

Cho hàm số y = f(x) thỏa mãn f0=0,fx+f'x=1,x. Giá trị của f(ln2) bằng

A. 2

B. 12

C. 1ln2

D. ln2

47. Nhiều lựa chọn

Có bao nhiêu giá trị nguyên của tham số m25;0 sao cho hàm số y=x45exmx2m2mx+2  luôn đồng biến trên khoảng 2;+  ?

A. 5

B. 24

C. 20

D. 19

48. Nhiều lựa chọn

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;100] để bất phương trình 42xm4.23x2m+4.2xm<1 nghiệm đúng với x;4?

A. 99

B. 92

C. 98

D. 93

49. Nhiều lựa chọn

Cho x và y là các số thực. Giá trị nhỏ nhất của biểu thức P=y10x2022+eyxln102022

A. 0

B. 2

C. 5ln1022022

D. 32

50. Nhiều lựa chọn

Trong hệ trục tọa độ Oxyz cho 3 điểm A(5;-2;0), B(4;5;-2) và C(0;3;2). Điểm M di chuyển trên trục Ox. Đặt Q=2MA+MB+MC+3MB+MC. Biết giá trị nhỏ nhất của Q có dạng ab trong đó a,b và b là số nguyên tố. Tính a + b.

A. 38

B. 23

C. 43

D. 18

© All rights reserved VietJack