20 CÂU HỎI
Cho dãy số (un) được xác định như sau: \[{{\rm{u}}_{\rm{1}}}{\rm{ = 1}}\] và \[{{\rm{u}}_{{\rm{n + 1}}}}{\rm{ = 3}} - {{\rm{u}}_{\rm{n}}}\] với \[{\rm{n}} \ge 1.\]. Số hạng u2 bằng
A. – 1
B. 1
C. 2
D. – 2
Cho dãy số (un). Với mọi \[{\rm{n}} \in {\mathbb{N}^ * }\]dãy số (un) được gọi là dãy số tăng nếu:
A. \[\frac{{{{\rm{u}}_{{\rm{n + 1}}}}}}{{{{\rm{u}}_{\rm{n}}}}} > 0\]
B. \[\frac{{{{\rm{u}}_{{\rm{n + 1}}}}}}{{{{\rm{u}}_{\rm{n}}}}} < 0\]
C. \[{{\rm{u}}_{{\rm{n + 1}}}} - {{\rm{u}}_{\rm{n}}} > 0\]
D. \[{{\rm{u}}_{{\rm{n + 1}}}} - {{\rm{u}}_{\rm{n}}} < 0\]
Cho dãy số (un) . Khẳng định nào sau đây đúng?
A. Nếu tồn tại số M > 0 sao cho \[\left| {{{\rm{u}}_{\rm{n}}}} \right| \le {\rm{M, }}\forall {\rm{n}} \in {\mathbb{N}^ * }\] thì (un) là dãy số bị chặn.
B. Nếu tồn tại cặp số M, m và tồn tại giá trị n sao cho \[m \le {u_n} \le M\] thì (un) là dãy số bị chặn.
C. Nếu tồn tại số m sao cho \[{{\rm{u}}_{\rm{n}}} \ge {\rm{m}},\forall {\rm{n}} \in {\mathbb{N}^ * }\] thì (un) là dãy số bị chặn.
D. Nếu tồn tại số M sao cho \[{{\rm{u}}_{\rm{n}}} \le {\rm{M}},\forall {\rm{n}} \in {\mathbb{N}^ * }\] thì (un) là dãy số bị chặn.
Cho dãy số (un) xác định bởi công thức\[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{n}}}{{{\rm{n + 1}}}}\] với \[{\rm{n}} \ge 1\]. Số hạng thứ 10 của dãy số là:
A. \[\frac{9}{{10}}\]
B. \[\frac{{10}}{{11}}\]
C. \[\frac{{11}}{{10}}\]
D. \[\frac{{10}}{9}\]
Cho tổng \[{{\rm{S}}_{{\rm{n }}}}{\rm{ = 1 + 2 + 3 + }}..........{\rm{ + n}}\]. Khi đó\[{{\rm{S}}_{{\rm{10}}}}\]là bao nhiêu?
A. 55.
B. 45.
C. 54.
D. 44.
Cho tổng \[{{\rm{S}}_{{\rm{n }}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{\rm{n}}{\rm{.}}\left( {{\rm{n + 1}}} \right)}}\]với\[{\rm{n}} \in {\mathbb{N}^ * }\].Lựa chọn đáp án đúng.
A. \[{{\rm{S}}_{{\rm{2 }}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{3}}}\]
B. \[{{\rm{S}}_{{\rm{2 }}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}\]
C. \[{{\rm{S}}_{{\rm{3 }}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\]
D. \[{{\rm{S}}_{{\rm{3 }}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{12}}}}\]
Dãy số nào trong các dãy số sau là dãy số tăng?
A. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{{{\rm{n}}^{\rm{2}}}{\rm{ + n + 1}}}}{{{\rm{2}}{{\rm{n}}^{\rm{2}}}{\rm{ + 1}}}}\]
B. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}} - {\rm{2}}\]
C. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{3}}^{\rm{n}}} - {\rm{n}}\]
D. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{n}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ + 1}}}}\]
Trong các dãy số sau đây, với giả thiết \[{\rm{n}} \in {\mathbb{N}^ * }\]
\[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{\left( {\frac{{\rm{2}}}{{\rm{3}}}} \right)^{\rm{n}}}{\rm{; }}{{\rm{v}}_{\rm{n}}}{\rm{ = }}{\left( {\frac{{\rm{4}}}{{\rm{3}}}} \right)^{\rm{n}}}{\rm{; }}{{\rm{q}}_{\rm{n}}}{\rm{ = sinn + cosn}}\]. Số dãy số bị chặn là:
A. 0.
B. 1.
C. 2.
D. 3.
Trong các dãy số \[\left( {{{\rm{u}}_{\rm{n}}}} \right)\]cho bởi số hạng tổng quát un sau, dãy số nào bị chặn trên:
A. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{2}}^{\rm{n}}}\]
B. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{n}}^{\rm{2}}}\]
C. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\sqrt {{\rm{n + 1}}} \]
D. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}}\]
Cho dãy số (un), biết \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = }}{\left( { - {\rm{1}}} \right)^{\rm{n}}}\]. Chọn khẳng định đúng trong các khẳng định sau đây?
A. Dãy (un) bị chặn.
B. Dãy (un) tăng.
C. Dãy (un) giảm.
D. Dãy (un) có \[{{\rm{u}}_{{\rm{30 }}}}{\rm{ = 30}}\]
Tìm công thức tính số hạng tổng quát un theo n của các dãy số sau :\(\left\{ {\begin{array}{*{20}{c}}{{{\rm{u}}_{\rm{1}}}{\rm{ = 3}}}\\{{{\rm{u}}_{{\rm{n + 1}}}}{\rm{ = }}{{\rm{u}}_{{\rm{n }}}}{\rm{ + 2}}}\end{array}} \right.\)
A. \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 2n + 1}}\]
B. \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = n + 2}}\]
C. \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = }} - {\rm{n + 4}}\]
D. \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = }} - {\rm{n + 2}}\]
Dãy số (un) được xác định bởi công thức \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 3}} - {\rm{2n}}\] với \[{\rm{n}} \in {\mathbb{N}^ * }\]. Tính tổng \[{\rm{S = }}{{\rm{u}}_{\rm{1}}}{\rm{ + }}{{\rm{u}}_{\rm{2}}}{\rm{ + }}...{\rm{ + }}{{\rm{u}}_{{\rm{10}}}}\].
A. S = −81.
B. S = 81.
C. S = −80.
D. S = 80.
Cho tổng\[{\rm{S}}\left( {\rm{n}} \right){\rm{ = }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{\rm{n}}\left( {{\rm{n + 1}}} \right)}}\]. Khi đó công thức của S(n) là:
A. \[{\rm{S}}\left( {\rm{n}} \right){\rm{ = }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{n}}}}}\]
B. \[{\rm{S}}\left( {\rm{n}} \right){\rm{ = }}\frac{{{\rm{2n}}}}{{{\rm{2n + 1}}}}\]
C. \[{\rm{S}}\left( {\rm{n}} \right){\rm{ = }}\frac{{\rm{n}}}{{{\rm{n + 1}}}}\]
D. \[{\rm{S}}\left( {\rm{n}} \right){\rm{ = }}\frac{{\rm{n}}}{{{\rm{n + 2}}}}\]
Xét tính tăng, giảm và bị chặn của dãy số (un) biết:
\[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 1 + }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}\].
A. Dãy số tăng, bị chặn.
B. Dãy số giảm, bị chặn trên.
C. Dãy số tăng, bị chặn trên.
D. Dãy số tăng, bị chặn dưới.
Cho dãy số (un) với .
A. Dãy số tăng.
B. Dãy số giảm.
C. Dãy số không tăng không giảm.
D. Dãy số vừa tăng vừa giảm.
Với giá trị nào của a thì dãy số \[\left( {{{\rm{u}}_{\rm{n}}}} \right)\]với \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{an}} - {\rm{1}}}}{{{\rm{n + 2}}}},\forall {\rm{n}} \in {\mathbb{N}^ * }\] là dãy số tăng?
A. a > 2
B. \[{\rm{a}} > - \frac{1}{2}\]
C. \[{\rm{a < }} - \frac{1}{2}\]
</>
D. a < 2
Cho dãy số (un) với \(\left\{ {\begin{array}{*{20}{c}}{{{\rm{u}}_{{\rm{1 }}}}{\rm{ = 1}}}\\{{{\rm{u}}_{{\rm{n + 1 }}}}{\rm{ = 2}}{{\rm{u}}_{{\rm{n }}}}{\rm{ + 3}}}\end{array}} \right.,\forall n \in {\mathbb{N}^*}\). Tìm số hạng tổng quát un của dãy số.
A.\[{{\rm{u}}_{{\rm{n }}}}{\rm{ = }}{{\rm{2}}^{\rm{n}}}{\rm{ + 3}}\]
B. \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 3}}{\rm{.}}{{\rm{2}}^{{\rm{n + 1}}}}\]
C. \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 3}}{\rm{.}}{{\rm{2}}^{{\rm{n}} - {\rm{1}}}}\]
D. \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = }}{{\rm{2}}^{{\rm{n + 1}}}} - {\rm{3}}\]
Cho dãy số (un) xác định bởi \[{{\rm{u}}_{\rm{n}}}{\rm{ = 2023sin}}\frac{{{\rm{n\pi }}}}{{\rm{2}}}{\rm{ + 2024cos}}\frac{{{\rm{n\pi }}}}{{\rm{3}}}\]. Mệnh đề nào dưới đây đúng?
A. \[{{\rm{u}}_{{\rm{n + 9}}}}{\rm{ = }}{{\rm{u}}_{\rm{n}}}{\rm{,}}\forall {\rm{n}} \in {\mathbb{N}^ * }\]
B. \[{{\rm{u}}_{{\rm{n + 15}}}}{\rm{ = }}{{\rm{u}}_{\rm{n}}}{\rm{,}}\forall {\rm{n}} \in {\mathbb{N}^ * }\]
C. \[{{\rm{u}}_{{\rm{n + 12}}}}{\rm{ = }}{{\rm{u}}_{\rm{n}}}{\rm{,}}\forall {\rm{n}} \in {\mathbb{N}^ * }\]
D. \[{{\rm{u}}_{{\rm{n + 6}}}}{\rm{ = }}{{\rm{u}}_{\rm{n}}}{\rm{,}}\forall {\rm{n}} \in {\mathbb{N}^ * }\]
Cho dãy số (un) xác định bởi\(\left\{ {\begin{array}{*{20}{c}}{{{\rm{u}}_{\rm{1}}}{\rm{ = 1}}}\\{{{\rm{u}}_{{\rm{n + 1}}}}{\rm{ = }}{{\rm{u}}_{\rm{n}}}{\rm{ + 2n + 1}}}\end{array}} \right.\left( {n \ge 1} \right)\). Giá trị của n để\[ - {{\rm{u}}_{\rm{n}}}{\rm{ + 2023n + 2024 = }}0\]à:
A. Không có giá trị của n thoả mãn.
B. 1012.
C. 2023.
D. 2024.
Cho dãy số (un) với \[{{\rm{u}}_{\rm{n}}}{\rm{ = sin}}\left( {\frac{{{\rm{2n\pi }}}}{{\rm{3}}} - \frac{{\rm{\pi }}}{{\rm{6}}}} \right)\]. Gọi Sn là tổng n số hạng đầu tiên của dãy số này. Tính giá trị của biểu thức: \[{\rm{T = }}{\left( {{{\rm{S}}_{{\rm{2023}}}}} \right)^{\rm{2}}}{\rm{ + 2}}{{\rm{S}}_{{\rm{2024}}}} - {\rm{3}}\]
A. T = – 2
B. T = 0
C. T = – 1
D. T = – 3