15 CÂU HỎI
Khẳng định nào sau đây sai?
A. \({x^2} - 4x - 3 = 0\) trong đó \(a = 1;\,\,b = - 4;\,\,c = - 3.\)
B. \(4{x^2} - \sqrt 2 x + 1 = 0\) trong đó \(a = 4;\,\,b = - \sqrt 2 ;\,\,c = 1.\)
C. \({x^2} - 4x - 5 = 0\) trong đó \(a = 1;\,\,b = - 4;\,\,c = 5.\)
D. \(\sqrt 5 {x^2} - m - 1 = 0\)trong đó \(a = \sqrt 5 ;\,\,b = 0;\,\,c = - m - 1.\)
Cho phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) có biệt thức \(\Delta = {b^2} - 4ac.\) Phương trình đã cho có nghiệm khi
A. \(\Delta < 0.\)
>
B. \(\Delta = 0.\)
C. \(\Delta \ge 0.\)
D. \(\Delta > 0.\)
Phương trình \(4{x^2} + 9 = 0\) có bao nhiêu nghiệm?
A. vô nghiệm.
B. \(1\) nghiệm.
C. \(2\) nghiệm.
D. 3 nghiệm.
II. Thông hiểu
Nghiệm của phương trình \(2{x^2} - 5x + 2 = 0\) là
A. \({x_1} = - 2;\,\,{x_2} = - 1.\)
B. \({x_1} = 2;\,\,{x_2} = - \frac{1}{2}.\)
C. \({x_1} = 2;\,\,{x_2} = \frac{1}{2}.\)
D. \({x_1} = - \frac{1}{2};\,\,{x_2} = - 2.\)
Phương trình \(9{x^2} - 30x + 25 = 0\) có nghiệm là
A. \({x_1} = {x_2} = \frac{5}{3}.\)
B. \({x_1} = {x_2} = - \frac{5}{3}.\)
C. \({x_1} = {x_2} = - \frac{3}{3}.\)
D. \({x_1} = {x_2} = \frac{3}{5}.\)
Cho phương trình \(3{x^2} + 6x + 9 = 0\). Kết luận nào sau đây đúng?
A. \(\Delta = 72\) và phương trình có hai nghiệm phân biệt.
B. \(\Delta = - 72\) và phương trình có hai nghiệm phân biệt.
C. \(\Delta = 0\) và phương trình có nghiệm kép.
D. \(\Delta = - 72\) và phương trình vô nghiệm.
Phương trình nào sau đây nhận \(x = 1\) và \(x = - 3\) làm nghiệm?
A. \(2{x^2} + 6x = 0.\)
B. \({x^2} - 2x + 1 = 0.\)
C. \({x^2} + 2x - 3 = 0.\)
D. \(\sqrt 3 {x^2} + x - 3 = 0.\)
Cho hai phương trình sau đây: \({x^2} - 6x + 8 = 0\,\,\,\left( 1 \right)\,;\,\,{x^2} + 2x - 3 = 0\,\,\,\left( 2 \right)\,.\) Khẳng định nào sau đây đúng.
A. Phương trình \(\left( 1 \right)\) có nghiệm kép, phương trình \(\left( 2 \right)\) vô nghiệm.
B. Phương trình \(\left( 1 \right)\) vô nghiệm, phương trình \(\left( 2 \right)\) có nghiệm kép.
C. Cả hai phương trình \(\left( 1 \right)\,,\,\,\left( 2 \right)\) đều có nghiệm bằng \(0.\)
D. Cả hai phương trình \(\left( 1 \right)\,,\,\,\left( 2 \right)\) đều có hai nghiệm phân biệt.
Một đội xe cần phải chuyên chở \(150\) tấn hàng. Hôm làm việc có \(5\) xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm \(5\) tấn. Nếu gọi số xe ban đầu là \(x\). Phương trình của bài toán này là
A. \(\frac{{150}}{{x + 5}} - \frac{{150}}{x} = 5\).
B. \(\frac{{150}}{{x - 5}} - \frac{{150}}{x} = 5\).
C. \(\frac{{150}}{{x - 5}} + \frac{{150}}{x} = 5\).
D. \(\frac{{150}}{{x + 5}} + \frac{{150}}{x} = 5\).
Phương trình \({x^4} - 6{x^2} - 7 = 0\) có bao nhiêu nghiệm?
A. \(0.\)
B. \(1.\)
C. 2
D. \(4.\)
III. Vận dụng
Tích các nghiệm của phương trình \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\) là
A. \(2.\)
B. \[ - 2.\]
C. \( - 9.\)
D. \(9.\)
Một đoàn xe vận tải nhận chuyên chở \(24\) tấn hàng. Khi sắp khởi hành thì đoàn xe được điều thêm \(6\)chiếc xe nữa nên mỗi xe lúc đó phải chởi ít hơn \(2\) tấn hàng so với dự định. Tính số xe thực tế tham gia vận chuyển (biết khối lượng hàng mỗi xe chở là như nhau).
A. \(81.\)
B. \(12.\)
C. \(6.\)
D. \(18.\)
I. Nhận biết
Phương trình nào dưới đây là phương trình bậc hai một ẩn?
A. \(3{x^2} - 3\sqrt x + 2 = 0.\)
B. \(2{x^2} - 2022 = 0.\)
C. \(4x + \frac{1}{x} - 5 = 0.\)
D. \(5x - 1 = 0.\)
Giải một bài toán bằng cách lập phương trình có bao nhiêu bước?
A.\(4.\)
B. \(5.\)
C. \(3.\)
D. \(5.\)
Một công nhân dự định làm \(70\) sản phẩm trong thời gian quy định. Nhưng do áp dụng kĩ thuật nên đã tăng năng suất thêm \(5\) sản phẩm mỗi giờ. Do đó, không những hoàn thành kế hoạch trước thời hạn \(40\) phút mà còn làm thêm được \(10\) sản phẩm so với dự định. Hỏi năng suất dự định là bao nhiêu?
A. \(15\) sản phẩm/giờ.
B. \(20\)sản phẩm/giờ.
C. \(25\)sản phẩm/giờ.
D. \(30\) sản phẩm/giờ.