15 CÂU HỎI
Cho ∆ABC, gọi I là giao điểm của hai đường trung trực của hai cạnh AB và AC. Kết quả nào dưới đây đúng?
A. IA > IB > IC;
B. IA = IB = IC;
C. IA < IB < IC;
D. Không thể so sánh được độ dài của IA, IB, IC.
Cho ∆ABC có M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại O. Số đo bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
Cho ∆ABC cân tại A. Gọi M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại E. Điểm E thuộc đường thẳng nào trong các đường thẳng sau đây.
A. BC;
B. AM;
C. AB;
D. AC.
Cho ∆ABC cân tại A, đường trung tuyến AM. Đường trung trực của AB cắt AM ở O. Biết OA = 4 cm. Tính OB và OC.
A. OB = OC = 2 cm;
B. OB = OC = 4 cm;
C. OB = OC = 8 cm;
D. OB = 2 cm; OC = 4 cm.
Cho ∆ABC có O là giao điểm của ba đường trung trực của tam giác. Biết BO cũng là tia phân giác của . Khẳng định nào sau đây sai?
A. ∆BOA = ∆BOC;
B. ∆BAC cân tại A;
C. B thuộc đường trung trực của cạnh AC;
D. .
Cho ∆ABC cân tại A. Trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho AD = AE, CD cắt BE tại O. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng nhất?
A. ∆BOC cân tại O;
B. Ba điểm A, O, M thẳng hàng;
C. AM, BE, CD đồng quy tại một điểm;
D. Cả A, B, C đều đúng.
Cho ∆ABC có là góc tù. Các đường trung trực của cạnh AB và AC cắt nhau tại O và cắt BC theo thứ tự tại D và E. Khẳng định nào sau đây đúng nhất?
A. ∆ABD cân tại D;
B. ∆ACE cân tại E;
C. ∆OAB cân tại O;
D. Cả A, B, C đều đúng.
Cho ∆ABC cân tại A, có . Đường trung trực của cạnh AB cắt BC tại D. Trên tia đối của tia AD, lấy điểm M sao cho AM = CD. Khẳng định nào sau đây đúng nhất?
A. ;
B. ∆BMD cân tại M;
C. ∆BMD cân tại B;
D. ∆BMD đều.
Cho ∆ABC có tù. Các đường trung trực của AB và AC cắt BC lần lượt tại D và E. Biết . Số đo bằng:
A. 95°;
B. 100°;
C. 105°;
D. 115°.
Cho ∆ABC có AB < AC. Trên cạnh AC lấy điểm M sao cho CM = AB. Vẽ đường trung trực của AC, cắt tia phân giác của tại điểm O. Đường trung trực của đoạn thẳng BM đi qua điểm:
A. O
B. A
C. M
D. C
Cho ∆ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP. Giao điểm của ba đường trung trực của ∆MNP là
A. Điểm B;
B. Trung điểm của cạnh NP;
C. Trung điểm của cạnh MN;
D. Giao điểm của ba đường trung trực của ∆ABC.
Cho , A là một điểm di động ở trong . Vẽ các điểm M và N sao cho Ox là đường trung trực của AM và Oy là đường trung trực của AN. Để O là trung điểm của MN của giá trị của α bằng:
A. 30°;
B. 60°;
C. 90°;
D. 120°.
Cho ∆ABC vuông tại A. Gọi E, F lần lượt là trung điểm các cạnh AC, AB. Giao điểm của ba đường trung trực của tam giác ABC:
A. Nằm trong ∆ABC;
B. Nằm ngoài ∆ABC;
C. Là trung điểm của cạnh huyền BC;
D. Đáp án khác.
Cho ∆ABC có ba góc nhọn, O là giao điểm hai đường trung trực của AB và AC. Trên tia đối của tia OB, lấy điểm D sao cho OB = OD. Biết . Khẳng định nào sau đây đúng nhất?
A. ∆ABD vuông;
B. ∆CBD vuông;
C. ;
D. Cả A, B, C đều đúng.
Cho ∆ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Vẽ các điểm D và E sao cho AB là đường trung trực của MD và AC là đường trung trực của ME. Khẳng định nào sau đây đúng nhất?
A. Ba điểm D, A, E thẳng hàng;
B. DE ngắn nhất khi và chỉ khi AM ngắn nhất;
C. AM ngắn nhất khi và chỉ khi M là hình chiếu của A lên cạnh BC;
D. Cả A, B, C đều đúng.