24 CÂU HỎI
Trong không gian tọa độ Oxyz, cho mặt cầu (S): và mặt phẳng . Tìm m để (P) cắt (S) theo giao tuyến là một đường tròn bán kính lớn nhất.
A. m = -4
B. m = 4
C. m = 7
D. m = 0
Trong không gian với hệ tọa độ Oxyz, gọi I(a;b;c) là tâm mặt cầu đi qua điểm A(1;-1;4) và tiếp xúc với tất cả các mặt phẳng tọa độ. Tính P=a-b+c
A. P = 6
B. P = 0
C. P = 3
D. P = 9
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-1;0;1), B(3;2;1). Gọi C(5;3;7) thỏa mãn MA = MB và MB + MC đạt giá trị nhỏ nhất. Tính P = a + b + c
A. 4
B. 0
C. 2
D. 5
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng , và . Một đường thẳng d thay đổi cắt ba mặt phẳng (P); (Q); (R) lần lượt tại A, B, C. Đặt . Tìm giá trị nhỏ nhất của T.
A. min T = 108
B.
C. min T = 96
D.
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với . Tìm tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho nhỏ nhất
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm và . Biết mặt phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vec tơ pháp tuyến là . Tổng a + b là:
A. -2
B. 1
C. 2
D. -1
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;1) và đường thẳng . Biết đường thẳng qua A, cắt d và khoảng cách từ gốc tọa độ đến nhỏ nhất, có một vec tơ chỉ phương là (1;a;b). Tổng a + b là
A.
B.
C. 17
D. -17
Trong không gian Oxyz, cho hai đường thẳng và . Đường vuông góc chung của và lần lượt cắt tại A và B. Diện tích tam giác OAB bằng:
A.
B.
C.
D.
Trong không gian Oxyz, cho đường thẳng và hai điểm . Gọi là đường thẳng qua A, vuông góc với d sao cho khoảng cách từ B đến là nhỏ nhất. Gọi là một vec to chỉ phương của . Khi đó, bằng:
A.
B.
C.
D. 3
Trong không gian Oxyz, cho 2 điểm A(1;2;-3), M(-2;-2;1) và đường thẳng . là đường thẳng đi qua M và vuông góc với đường thẳng d đồng thời cách A một khoảng lớn nhất, khi đó đi qua điểm nào trong các điểm sau:
A.
B.
C.
D.
Trong không gian Oxyz, cho M(-1;3;4), mặt phẳng (P) đi qua M cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho M là trực tâm tam giác ABC. Thể tích khối tứ diện OABC bằng:
A.
B.
C.
D.
Trong không gian Oxyz, cho 3 điểm và mặt cầu . Điểm M thuộc mặt cầu (S) sao cho tổng đạt giá trị nhỏ nhất, khi đó, độ dài vec tơ là:
A.
B.
C.
D.
Trong không gian Oxyz, cho mặt cầu . Phương trình mặt phẳng (Q) chứa trục Ox và cắt (S) theo giao tuyến là một đường tròn bán kính bằng 2 là:
A.
B.
C.
D.
Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC = 1, các điểm A, B thay đổi trên Ox, Oy sao cho OA+ OB = OC. Giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC là:
A.
B.
C.
D.
Trong không gian Oxyz, cho A(-4;7;5) và hai đường thẳng . Đường thẳng d đi qua A đồng thời cắt có phương trình là:
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm . Điểm thuộc mặt phẳng (Oxyz) sao cho nhỏ nhất. Tính
A. P = 5
B. P = 3
C. P = 7
D. P = -5
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng và . Phương trình mặt phẳng (P) song song và cách đều hai đường thẳng là:
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu . Cho m là số thực thỏa mãn giao tuyến của hai mặt phẳng và tiếp xúc với mặt cầu (S). Tính tất cả các giá trị mà m có thể nhận được bằng:
A. -11
B. -10
C. -5
D. -8
Trong không gian với hệ tọa độ Oxyz, cho ba điểm . Điểm M thay đổi trên mặt phẳng (ABC) và điểm N là điểm trên tia OM sao cho . Biết rằng khi M thay đổi, điểm N luôn thuộc một mặt cầu cố định. Tìm bán kính của mặt cầu đó?
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm và mặt phẳng . Biết rằng tồn tại điểm B trên tia AM, điểm C trên (P) và điểm D trên tia AN sao cho tứ giác ABCD là hình thoi. Tọa độ điểm C là:
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng ,, . Một đường thẳng thay đổi cắt ba mặt phẳng lần lượt tại các điểm A, B, C. Giá trị nhỏ nhất của biểu thức là:
A.
B. 99
C. 18
D. 24
Trong không gian Oxyz, cho mặt cầu có tâm có bán kính bằng 4 và mặt cầu có tâm có bán kính bằng 2. (P) là mặt phẳng thay đổi tiếp xúc với hai mặt cầu . Đặt M, m lần lượt là giá trị lớn nhất, nhỏ nhất của khoảng cách từ điểm O đến (P). Giá trị M + m bằng?
A.
B. 9
C. 8
D.
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng là đường vuông góc chung của A’C và BC’. Tỉ số bằng:
A.
B.
C. 1
D.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và mặt cầu . Qua d dựng các mặt phẳng tiếp xúc với (S) lần lượt tại . Tìm tọa độ trung điểm H của
A.
B.
C.
D.