10 CÂU HỎI
Chọn hệ thức đúng được suy ra từ hệ thức cos2 α + sin2 α = 1 với 0° ≤ α ≤ 180°?
A. \[{\cos ^2}\frac{\alpha }{2} + {\sin ^2}\frac{\alpha }{2} = \frac{1}{2}\];
B. \[{\cos ^2}\frac{\alpha }{3} + {\sin ^2}\frac{\alpha }{3} = \frac{1}{3}\];
C. \[{\cos ^2}\frac{\alpha }{4} + {\sin ^2}\frac{\alpha }{4} = \frac{1}{4}\];
D. \[5\left( {{{\cos }^2}\frac{\alpha }{5} + {{\sin }^2}\frac{\alpha }{5}} \right) = 5\].
Cho tam giác ABC, tìm đẳng thức sai trong các đẳng thức sau ?
A. sin A = sin (B + C);
B. tan A = tan (B + C);
C. \(\cos \frac{A}{2} = \sin \frac{{B + C}}{2}\);
D. tan A = − tan (B + C).
Cho góc x với 0° < x < 90°. Trong các đẳng thức dưới đây, đẳng thức đúng là?
A. \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\);
B. \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x}}{{\tan x - 1}}\);
C. \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x}}\);
D. \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{{{\tan }^2}x + 1}}{{\tan x - 1}}\).
Với 0° ≤ x ≤ 180°, biểu thức (sin x + cos x)2 bằng:
A. 1;
B. 1 + 2sin x. cos x;
C. 1 – 2sin x. cos x;
D. 0.
Cho 0° ≤ x ≤ 180°. Tìm đẳng thức đúng trong các đẳng thức dưới đây?
A. sin4 x + cos4 x = 1;
B. sin4 x + cos4 x = sin2 x – cos2 x;
C. sin4 x + cos4 x = 1 – 2 sin2 x. cos2 x;
D. sin4 x + cos4 x = 1 + 2 sin2 x. cos2 x.
Cho 0° ≤ x ≤ 180°. Giá trị của biểu thức (sin2 x + cos2 x)2 + (sin2 x − cos2 x)2
A. không phụ thuộc vào biến x;
B. phụ thuộc vào biến x;
C. bằng 0;
D. bằng 1.
Biểu thức 1 − (sin6 x + cos6 x) bằng biểu thức nào sau đây:
A. 3sin2 x . cos 2 x;
B. sin2x;
C.1 − 3sin2 x . cos 2 x;
D. 2 + sin2x.
Tìm đẳng thức đúng trong các đẳng thức sau đây:
A. sin 20° = sin 160°;
B. cos 20° = cos 160°;
C. tan 20° = tan 160°;
D. cot 20° = cot 160°.
Biểu thức \(\sqrt {{{\sin }^4}x + 4{{\cos }^2}x} + \sqrt {{{\cos }^4}x + 4{{\sin }^2}x} + {\tan ^2}x\) bằng biểu thức nào sau đây?
A. 3 – tan2x;
B. 3 + tan2x;
C. tan2x;
D. 4 + tanx.
Cho (0° < α < 90°), khi đó sin (α + 90°) bằng
A. sin α;
B. cos α;
C. – sin α;
D. – cos α.