25 CÂU HỎI
Cho và . Nếu , khi đó A’B’ có độ dài là:
A.
B.
C.
D.
Cho và . Nếu , khi đó A’B’ có độ dài là:
A.
B.
C.
D.
Cho và . Nếu , khi đó A’B có độ dài là:
A.
B.
C.
D.
Cho và . Nếu , khi đó AB’ có độ dài là:
A.
B.
C.
D.
Cho và . Nếu , khi đó A’B’ có độ dài là:
A.
B.
C.
D.
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. BD lần lượt cắt CE, AF lần lượt tại K và H. Phép vị tự tâm H tỉ số k biến D thành B. Khi đó k bằng:
A. 2
B. -2
C.
D.
Cho và . Ánh của A qua phép tịnh tiến theo véctơ có toạ độ là:
A.
B.
C.
D.
Cho và A(2,0). Ảnh của A qua phép tịnh tiến theo véctơ có toạ độ là:
A. (0,0)
B. (2;5)
C.(2;0)
D.(2;–5)
Cho và A(–3;1). Ảnh của A qua phép tịnh tiến theo véctơ có toạ độ là:
A. (2;5)
B. (5;2)
C.(4;1)
D. (–1;4)
Cho điểm . Điểm M’ là ảnh của điểm M qua phép tịnh tiến với . Tọa độ điểm M’ là:
A. M’(1;–8)
B. M’(2;3)
C.M’(–2;–3)
D. M’(–1;8).
Trong Oxy, cho đường thẳng d: 2x - 3y + 1 = 0 . Tìm ảnh của đường thẳng d qua phép đối xứng tâm I( 2;1)
A. 2x + 3y - 1 =0
B. 2x -3y= 0
C. 2x - 3y + 3 = 0
D. Không thể xác định được
Cho hai điểm cố định B, C trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ABC:
A.Là đường tròn (O) bán kính = BC
B. Là đường thẳngđi qua BC và vuông góc với BC tại I ( là trung điểm của BC)
C. Là đường tròn tâm (O’) (ảnh của (O) qua phép tịnh tiến theo vectơ )
D.Là đường tròn tâm (O’) ( ảnh của (O) qua phép tịnh tiến theo vectơ với BB’ là đường kính đường tròn (O))
Trong các chữ: T, O, Q, U, C,W, L, có bao nhiêu chữ có trục đối xứng:
A.2
B.3
C.4
D.5
Cho A(1; ). Thực hiện biến điểm A thành điểm có tọa độ:
A.
B.
C.
D.
Cho A(1; ). Thực hiện biếnđiểm A thành điểm có tọa độ
A. (0; )
B. (2;3)
C.
D.
Cho 2 đường tròn (O) , (O’) có cùng bán kính, tiếp xúc với nhau. Phép biến hình nào sau đây không thể biến hình này thành hình kia:
A. Phép tịnh tiến
B. Phép đối xứng trục
C. Phép đối xứng tâm
D.Phép vị tự tỉ số k
Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF.
A.Là đường tròn (O) bán kính AB
B. Là tập hợp đường tròn (O’) với (O’) làảnh của (O) qua phép tịnh tiến theo vectơ
C. Là tập hợp đường tròn (O’) với (O’) làảnh của (O) qua phép tịnh tiến theo vectơ
D. Là tập hợp đường thẳng d đi qua A và vuông góc với AB
Cho đường thẳng d: y = 1. . Viết phương trình đường thẳng d’
A.
B.
C.
D.
Cho A(2; 3). Thực hiện liên tiếp phép tịnh tiến theo , phép quay tâm O góc quay , phép đối xứng tâm O, phép đối xứng trụcOx. Ảnh của A có tọa độ:
A. A(3;5)
B. B(–5;3)
C. C(5;–3)
D.D(5;3)
Trên đường tròn (O;R) cho hai điểm B, C cố định và một điểm A thay đổi. Gọi H là trực tâm của ABC và H' là điểm sao cho HBH' Clà hình bình hành. Tìm quĩ tích của điểm H.
A. (O;R)
B. (O’;R) với O’ làảnh của O qua phép đối xưng tâm I ( trung điểm BC)
C. (O; 2R)
D. (O’; R) với O’ làảnh của O qua phép quay tâm B góc quay
Cho ABC ( quy ước thứ tựcácđiểm theo chiều kim đồng hồ). E là ảnh của B qua phép quay tâm A góc quay , F là ảnh của C qua phép quay tâm A góc quay . Gọi M, N, P lần lượt là trung điểm của EB, BC, CF. MNP là tam giác gì:
A. Tam giácvuông
B. Tam giác cân
C.Tam giác vuông cân
D. Tam giác đều
Cho tam giác ABC cân tại A. Tìm mệnh đề đúng
A. Tồn tại phép vị tự biến tam giác ABC thành chính nó
B. Tồn tại phép đối xứng trục biến tam giác ABC thành chính nó
C. Tồn tại phép quay ( góc quay khác ) biến tam giác ABC thành chính nó
D. Tồn tại phép đối xứng tâm biến tam giác ABC thành chính nó
Cho parabol (P): . Tìm ảnh của parabol qua phép đối xứng tâm I(1; 2)
A.
B.y = - + 10x - 12
C.
D. Đáp án khác
Cho các hình sau
1: Hình tròn
2: Đường thẳng
3: Đoạn thẳng
4. Hình vuông
5. Đa giác đều n cạnh
Trong các hình trên có bao nhiêu hình có vô số trục đối xứng
A. 1
B. 2
C. 2
D. 3
Cho hình ngũ giác đều có tất cả bao nhiêu trục đối xứng và tâm đối xứng
A. 3
B. 4
C. 5
D. 6