25 CÂU HỎI
Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của mp (SAD) và mp (SBC) là đường thẳng song song với đường thẳng nào trong số các đường thẳng sau?
A. AC
B. BD
C. AD
D. SC
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi I,J lần lượt là trọng tâm của các tam giác ABC và A’B’C’. Thiết diện tạo bởi mp(AIJ) với hình lăng trụ đã cho là:
A. Tam giác cân
B. Hình thang
C. Hình bình hành
D. Tam giác vuông
Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề nào dưới đây đúng:
A. GE//CD
B. GE và CD chéo nhau
C. GE cắt AD
D. GE cắt CD
Cho hai hình vuông ABCD và ABEF không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?
A. AD//BE
B. (DAF)//(CBE)
C. DF//BC
D. (ABD)//(CFE)
Cho tứ diện ABCD. Các điểm P,Q lần lượt là trung điểm của AB và CD; điểm R nằm trên cạnh BC sao cho BR=2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số SA/SD là:
A. 2
B. 1/2
C. 1/3
D. 1
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi, O là giao điểm của hai đường chéo AC và BD. Thiết diện của hình chóp khi cắt bởi mặt phẳng qua O, song song với AB và SC là hình gì?
A. Hình vuông
B. Hình bình hành
C. Hình chữ nhật
D. Hình thang
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua trung điểm F của cạnh AB, song song với BD và SA là hình gì?
A. Lục giác
B. Tam giác
C. Tứ giác
D. Ngũ giác
Cho hình bình hành ABCD. Gọi Bx,Cy,Dz lần lượt là các đường thẳng song song với nhau đi qua B,C,D và nằm về cùng một phía của mp(ABCD), đồng thời không nằm trong mp(ABCD). Một mặt phẳng đi qua Avà cắt Bx,Cy,Dz lần lượt tại B’,C’,D’ biết BB’=4, DD’=2. Khi đó CC’ bằng:
A. 3
B. 4
C. 5
D. 6
Cho tứ diện ABCD và ba điểm E,F,G lần lượt nằm trên ba cạnh AB,BC,CD mà không trùng với các đỉnh (FG không song song với BD). Thiết diện của hình tứ diện ABCD khi cắt bởi mp(EFG) là:
A. Một tứ giác
B. Một tam giác
C. Một ngũ giác
D. Một đoạn thẳng
Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC. E là điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mp(MNE) và tứ diện ABCD là:
A. Tam giác MNE
B. Tứ giác MNEH với H là điểm bất kì trên cạnh BD
C. Hình bình hành MNEH với H là điểm trên cạnh BD mà EH//BC
D. Hình thang MNEH với H là điểm trên cạnh BD mà EH//BC
Cho tứ diện ABCD. Gọi M,K lần lượt là trung điểm của BC và AC. N là điểm trên cạnh BD sao cho BN=2ND. Gọi F là giao điểm của AD và mp(MNK). Trong các mệnh đề sau, mệnh đề nào đúng?
A. AF=3FD
B. AF=2FD
C. AF=FD
D. FD=2AF
Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC. Gọi d là giao tuyến của hai mặt phẳng (DMN) và (DBC). Xét vị trí tương đối của d và mp(ABC) là:
A. d cắt (ABC)
B. d(ABC)
C. d không song song (ABC)
D. d//(ABC)
Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC. Xét vị trí tương đối của đường thẳng MN và mp(BCD) là:
A. MN nằm trong (BCD)
B. MN không song song (BCD)
C. MN//(BCD)
D. MN cắt (BCD)
Cho tứ diện đều SABC. Gọi I là trung điểm của AB, M là một điểm di động trên đoạn AI. Gọi (P) là mp qua M và song song với mp(SIC); biết AM=x. Thiết diện tạo bởi mp(P) và tứ diện SABC có chu vi là:
A. 3x(1+ )
B. 2x(1+ )
C. x(1+ )
D. Không tính được
Gọi G là trọng tâm của tứ diện ABCD. A’ là trọng tâm của tam giác BCD. Tính tỉ số GA/GA’ là:
A. 1/2
B. 2
C. 3
D. 1/3
Cho một hình hộp có độ dài ba cạnh cùng xuất phát từ một đỉnh lần lượt là 3,4,5. Tổng bình phương tất cả các đường chéo của hình hộp đó bằng:
A. 50
B. 60
C. 200
D. Không tính được
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mặt phẳng (P). Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O; giao điểm của hai đường thẳng CM và SO là I; giao điểm của hai đường thẳng NI và SD là J. Tìm giao điểm của mp(CMN) với đường thẳng SO là:
A. A
B. J
C. I
D. B
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trung điểm của cạnh A’B’. Gọi d là giao tuyến của hai mặt phẳng (A’B’C’) và (A’BC). Thiết diện của hình lăng trụ khi cắt bởi mp(H,d) là hình gì?
A. Không xác định
B. Tam giác
C. Hình vuông
D. Hình bình hành
Cho hình bình hành ABCD. Gọi Ax, By,Cz,Dt lần lượt là các đường thẳng song song với nhau đi qua A,B,C,D và nằm về cùng một phía của mp(ABCD), đồng thời không nằm trong mp(ABCD). Một mặt phẳng (P) lần lượt cắt Ax,By,Cz,Dt lần lượt tại A’,B’,C’,D’ biết AA’=x,BB’=y, CC’=z. Khi đó DD’ bằng:
A. x+y-z
B. x-y-z
C. x-y+z
D. x+y+z
Cho hình chóp S.ABCD. Gọi ABCD=J, ACBD=I, ADBC=K. Đẳng thức nào sai trong các đẳng thức sau?
A. (SAC)(SAD)=AB
B. (SAC)(SBD)=SI
C. (SAD)(SBC)=SK
D. (SAB)(SCD)=SJ
Trong các mệnh đề sau, mệnh đề nào đúng?
A. hai đường thẳng không cắt nhau và không song song thì chéo nhau
B. hai đường thẳng không song song thì chéo nhau
C. hai đường thẳng không có điểm chung thì chéo nhau
D. hai đường thẳng chéo nhau thì không có điểm chung
Cho 2 đường thẳng song song a và b. Trong các mệnh đề sau, mệnh đề nào sai ?
A. nếu mặt phẳng (P) cắt a thì cũng cắt b
B. Nếu mặt phẳng (P) song song với a thì cũng song song với b
C. Nếu mặt phẳng (P) song song với a thì mặt phẳng (P) hoặc song song với b hoặc mặt phẳng (P) chứa b
D. nếu mặt phẳng (P) chứa đường thẳng a thì cũng có thể chứa đường thẳng b
Trong các mệnh đề sau, mệnh đề nào sai ?
A. Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau
B. Nếu một đường thẳng cắt một trong hai mặt phẳng song song thì nó cắt mặt phẳng còn lại
C. Nếu một mặt phẳng cắt một trong hai mặt phẳng song song thì nó cắt mặt phẳng còn lại
D. Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại
Trong các mệnh đề sau, mệnh đề nào đúng?
A. hình chiếu song song của 2 đường thẳng chéo nhau thì song song với nhau
B. hình chiếu song song của 2 đường thẳng cắt nhau có thể song song với nhau
C. hình chiếu song song của 2 đường thẳng chéo nhau có thể song song với nhau
D. các mệnh đề trên đều sai
Cho tứ diện ABCD. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DA, AC và BD. Trong các mệnh đề sau, mệnh đề nào đúng?
A. hai đường thẳng RA và PQ cắt nhau
B. hai đường thẳng NR và PQ song song với nhau
C. hai đường thẳng MN và PQ song song với nhau
D. hai đường thẳng RA và MP chéo nhau