vietjack.com

10 Bài tập Tìm giao tuyến của hai mặt phẳng (có lời giải)
Quiz

10 Bài tập Tìm giao tuyến của hai mặt phẳng (có lời giải)

A
Admin
11 câu hỏiToánLớp 11
11 CÂU HỎI
1. Nhiều lựa chọn

Cho tứ diện ABCD. M và N là trung điểm của AD và AC. G là trọng tâm tam giác BCD. Giao tuyến của 2 mặt phẳng (GMN) và (BCD) là đường thẳng

A. qua M và song song với AB;

B. qua N và song song với BD;

C. qua G và song song với CD;

D. qua G và song song với BC.

2. Nhiều lựa chọn

Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB và CD. M và N là trung điểm AD và BC. G là trọng tâm tam giác SAB. Giao tuyến của (SAB) và (MNG) là:

A. SC;

B. Đường thẳng qua S và song song với AB;

C. Đường thẳng qua G và song song với CD;

D. Đường thẳng qua G và cắt BC.

3. Nhiều lựa chọn

Cho hình bình hành ABCD và điểm S nằm ngoài (ABCD). E là một điểm bất kì thuộc cạnh SA. Giao tuyến của mặt phẳng (ECD) và (SAB) là

A. Qua E và song song với AD;

B. Qua E và song song với AB;

C. Qua E và song song với AC;

D. Qua E và song song với BD.

4. Nhiều lựa chọn

Cho hình thoi ABCD và S nằm ngoài (ABCD). O là giao điểm của AC và BD. E và F lần lượt là trung điểm của CD và AE. Giao tuyến của (SFO) và (SCD) là

A. Qua A và song song EC;

B. Qua E và song song FO;

C. Qua S và song song FO;

D. Qua O và song song EC.

5. Nhiều lựa chọn

Cho hình thoi ABCD và S nằm ngoài (ABCD). Lấy điểm E trên SA sao cho 2SE = EA; Lấy điểm F trên SB sao cho 2SF = FB. Điểm H nằm trên cạnh SC không trùng với S. Giao tuyến của (EFH) và (SCD) là

A. Qua A và song song AB;

B. Qua F và song song CD;

C. Qua H và song song CD;

D. Đáp án khác.

6. Nhiều lựa chọn

Cho tứ diện ABCD và ba điểm P, Q, R lần lượt trên cạnh AB, CD và BC. Biết rằng PR // AC. Giao điểm S của mp(PQR) và cạnh AD

A. giao điểm của đường thẳng Qx và AD với Qx // AC;

B.giao điểm của đường thẳng Px và AD với Px // BD;

C. giao điểm của đường thẳng Rx và AD với Rx // BD;

D. giao điểm của đường thẳng Qx và AD với Qx // BD.

7. Nhiều lựa chọn

Cho hình bình hành ABCD và S nằm ngoài (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là

A. Đường thẳng đi qua S song song với AB, CD;

B. Đường thẳng đi qua S;

C. Điểm S;

D. Mặt phẳng (SAD).

8. Nhiều lựa chọn

Cho hình bình hành ABCD và S nằm ngoài (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng

A. AB;

B. AC;

C. BC;   

D. SA.

9. Nhiều lựa chọn

Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng

A. qua M và song song với AB;

B. qua N và song song với BD;

C. qua G và song song với CD;

D. qua G và song song với BC.

10. Nhiều lựa chọn

Cho hình bình hành ABCD và S nằm ngoài (ABCD), O là giao điểm của AC và BD. M là trung điểm cạnh SC. Trong các khẳng định sau, khẳng định sai là

A. MO // SA;

B. 4 điểm M, O, S và A đồng phẳng;

C. Giao tuyến của (SAB) và (MBD) là Bx trong đó Bx // SA // MO;

D. (MBD) ∩ (SAC) = MD.

11. Nhiều lựa chọn

Các đường chéo của hình hộp

A. Tạo thành một tam giác đều;

B. Tạo thành một tam giác cân;

C. Tạo thành một tam giác;

D. Đồng quy tại trung điểm mỗi đường.

© All rights reserved VietJack