10 CÂU HỎI
Phủ định của mệnh đề: “Có ít nhất một số tự nhiên có hai chữ số chia hết cho 11” là mệnh đề nào sau đây:
A. Mọi số tự nhiên có hai chữ số đều chia hết cho 11;
B. Có ít nhất một số tự nhiên có hai chữ số không chia hết cho 11;
C. Mọi số tự nhiên có hai chữ số đều không chia hết cho 11;
D. Có một số tự nhiên có hai chữ số chia hết cho 11.
Cho mệnh đề A “∀x ∈ ℝ, x2 – 2x + 15 < 0”. Mệnh đề phủ định của mệnh đề A là:
A. ∀x ∈ ℝ, x2 – 2x + 15 > 0;
B. ∀x ∈ ℝ, x2 – 2x + 15 ≥ 0;
C. Không tồn tại x: x2 – 2x + 15 < 0;
D. ∃x ∈ ℝ, x2 – 2x + 15 ≥ 0.
Mệnh đề phủ định của mệnh đề P “∃x: x2 + 2x + 3 là số chính phương” là:
A. ∀x: x2 + 2x + 3 không là số chính phương;
B. ∃x: x2 + 2x + 3 là số nguyên tố;
C. ∀x: x2 + 2x + 3 là hợp số;
D. ∃x: x2 + 2x + 3 là số thực.
Mệnh đề nào sau đây là phủ định của mệnh đề: “Mọi hệ phương trình đều vô nghiệm”.
A. Mọi hệ phương trình đều có nghiệm;
B. Tất cả các hệ phương trình đều có nghiệm;
C. Có ít nhất một hệ phương trình có nghiệm;
D. Có duy nhất một hệ phương trình có nghiệm.
Mệnh đề phủ định của mệnh đề P: “∃x ∈ ℝ, x3 – 3x2 +1 = 0” là:
A. ∃x ∈ ℝ, x3 – 3x2 +1 ≠ 0;
B. ∀x ∈ ℝ, x3 – 3x2 +1 = 0;
C. ∀x ∈ ℝ, x3 – 3x2 +1 ≠ 0;
D. ∃x ∈ ℝ, x3 – 3x2 +1 < 0.
Trong các mệnh đề sau, mệnh đề nào đúng?
A. Phủ định của mệnh đề “∀x ∈ ℝ, ” là mệnh đề “∀x ∈ ℝ, ”;
B. Phủ định của mệnh đề “∀k ∈ ℤ, k2 + k + 1 là một số lẻ” là mệnh đề “∃k ∈ ℤ, k2 + k + 1 là một số chẵn”;
C. Phủ định của mệnh đề “∀n ∈ ℕ sao cho n2 – 1 chia hết cho 24” là mệnh đề “ ∀n ∈ ℕ sao cho n2 – 1 không chia hết cho 24”;
D. Phủ định của mệnh đề “∀x ∈ ℚ, x3 – 3x + 1 > 0” là mệnh đề “∀x ∈ ℚ, x3 – 3x + 1 ≤ 0”.
Cho mệnh đề “Phương trình x2 – 6x + 9 = 0 vô nghiệm”. Tìm mệnh đề phủ định của mệnh đề đã cho và xét tính đúng, sai của mệnh đề phủ định.
A. Phương trình x2 – 6x + 9 = 0 vô nghiệm. Đây là mệnh đề đúng;
B. Phương trình x2 – 6x + 9 = 0 vô nghiệm. Đây là mệnh đề sai;
C. Phương trình x2 – 6x + 9 = 0 có nghiệm. Đây là mệnh đề đúng;
D. Phương trình x2 – 6x + 9 = 0 có nghiệm. Đây là mệnh đề sai.
Mệnh đề phủ định của mệnh đề “Có ít nhất một số thực x thỏa mãn điều kiện bình phương của nó là 1 số không dương” là:
A. ∀x ∈ ℝ: x2 > 0;
B. ∃x ∈ ℝ: x2 ≤ 0;
C. ∀x ∈ ℝ: x2 ≤ 0;
D. ∃x ∈ ℝ: x2 > 0.
Mệnh đề nào dưới đây có mệnh đề phủ định của nó là đúng?
A. "∀x ∈ ℝ: x < x + 2";
B. "∀n ∈ ℕ: 3n ≥ n";
C. "∃x ∈ ℚ: x2 = 5";
D. "∃x ∈ ℝ: x2 – 3 = 2x".
Mệnh đề phủ định của mệnh đề: “Số 15 chia hết cho 5 và 3” là
A. Số 15 chia hết cho 5 hoặc 3;
B. Số 15 không chia hết cho 5 và 3;
C. Số 15 không chia hết cho 5 hoặc 3;
D. Số 15 không chia hết cho 5 và chia hết cho 3.