vietjack.com

Ôn thi Tốt nghiệp THPT môn Toán (Đề 14)
Quiz

Ôn thi Tốt nghiệp THPT môn Toán (Đề 14)

V
VietJack
ToánTốt nghiệp THPT8 lượt thi
50 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Trên mặt phẳng tọa độ, điểm M (-4;5)là điểm biểu diễn của số phức nào dưới đây?

z=4+5i.

z=45i.

z=45i.z=5+4i.

z=5+4i.

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCcó đáy là tam giác đều cạnh 2a, cạnh bên SA vuông góc với đáy và SA=a3. Tính thể tích Vcủa khối chóp S.ABC.

V=34a3.

V=a3.

V=2a32.

V=12a3.

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=x+2x1. Khẳng định nào dưới đây là khẳng định đúng?

Hàm số nghịch biến trên ;11;+.

Hàm số nghịch biến trên mỗi khoảng ;1và 1;+.

Hàm số nghịch biến trên .

Hàm số đồng biến trên mỗi khoảng ;1và 1;+.

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P): 2x – z + 3 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?

n=2;0;1.

n=2;0;3.

n=0;2;1.

n=2;1;3.

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Tập nghiệm của bất phương trình 52x+3>125 là

52;+.

12;+.

0;+.

;52.

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCSA vuông góc với (ABC), tam giác ABC đều cạnh bằng a,  SA=a3. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng

Cho hình chóp S.ABC có SA vuông góc với (ABC), tam giác ABC đều cạnh bằng a, SA = a căn 3 (ảnh 1)

90°

60°

30°

45°

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Cho logab=3, logac=4. Khi đó P=logaa3cb2 bằng bao nhiêu?

-5

-1

7

11

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Cho cấp số cộng un, biết u5u1=20. Tìm công sai d  của cấp số cộng.

5

4

-4

-5

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz, góc giữa hai mặt phẳng OxyOxz bằng

45°

30°

90°

60°

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Biết fxdx=5xln5+3x+C. Khi đó f(x) bằng

fx=5xln5+3

fx=5xln5+3x

fx=5x+3x

5x+3

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho đường thẳng d:x12=y+31=z3. Phương trình tham số của đường thẳng d

x=2+ty=13tz=3

x=1+2ty=3tz=3t

x=1+2ty=3tz=3t

x=2+ty=13tz=3

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Nếu 13fx dx=5 35fx dx=1 thì 15fx dx bằng

4

-6

6

-4

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho mặt cầu (S) có phương trình x2+y2+z22x+4y6z2=0. Đường kính mặt cầu (S)

14

4

214

8

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Hàm số y=x+2022x+2023 cắt trục hoành tại điểm có hoành độ là

(0;-2023)

(-2022;0)

(2023;0)

(0;2023)

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Tập nghiệm của bất phương trình log13x3<2 

12;+

;12

;73

(3;12)

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Tìm số phức liên hợp của số phức z=i3i+1.

z¯=3+i

z¯=3+i

z¯=3i

z¯=3i

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Môđun của số phức z=3+4i bằng

5

5

25

7

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) có đạo hàm f'x=2x+1x+223x14,x. Số điểm cực trị của đồ thị hàm số f(x)

3.

1.

2.

0.

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Cho tập hợp A có 10 phần tử, số tập con gồm 2 phần tử của A

A102

102

C102

A108

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=fx=ax3+bx2+cx+d có đồ thị như hình vẽ dưới đây.

Cho hàm số y = f(x) = ã^3 + bx^2 + cx + d có đồ thị như hình vẽ dưới đây.   Hàm số y = f(x) đồng biến trên khoảng nào? (ảnh 1)

Hàm số y = f(x)  đồng biến trên khoảng nào?

1;1

;1

2;+

0;1

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Tập xác định của hàm số y=π+1x 

\0

1;+

0;+

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Đường thẳng nào dưới đây là đường tiệm cận ngang của đồ thị hàm số y=x32x+1?

x=12

y=12

y=12

x=12

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) có bảng biến thiên như sau

Cho hàm số f(x) có bảng biến thiên như sau   Điểm cực tiểu của của hàm số đã cho là (ảnh 1)

Điểm cực tiểu của của hàm số đã cho là

(0;2)

y = -5

x = 3

(3;-5)

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Trên khoảng 0;+, đạo hàm của hàm số y=log2023x 

y'=1x

y'=ln2023x

y'=1xln2023

y'=1xln2023

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Nếu 06fxdx=3 thì 06x+fxdx bằng

9

39

21

6

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình nón có bán kính đáy r = 3 và độ dài đường sinh l = 6. Diện tích xung quanh của hình nón đã cho bằng

6π

36π

108π

18π

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Hàm số nào dưới đây có đồ thị như hình vẽ?

Hàm số nào dưới đây có đồ thị như hình vẽ?   (ảnh 1)

y=2x2x1

y=2x+1x1

y=x+2x+1

y=2x1x+1

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Cho khối lăng trụ đứng có cạnh bên bằng 5, đáy là hình vuông có cạnh bằng 4. Thể tích khối lăng trụ bằng

60

80

100

20

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình đường thẳng đi qua điểm A (1;-2;0) và vuông góc với mặt phẳng (P): x – 2y + 2z + 1 = 0 là

x11=y22=z2

x11=y21=z2

x11=y+22=z2

x11=y22=z2

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho điểm M(3;2;-1). Khi đó, điểm đối xứng với M qua mặt phẳng (yOz) có tọa độ bằng

(3;-2;1)

(3;0;0)

(-3;2;-1)

(0;2;-1)

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Cho mặt cầu (S) tâm O , bán kính R = 3. Một mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn (C) sao cho khoảng cách từ tâm O đến mặt phẳng (P) bằng 1. Tính chu vi đường tròn (C).

42π

22π

8π

4π

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) thỏa mãn f’(x) = 4 – 3sin x và f(0) = 5. Tìm hàm số f(x).

fx=4x+3cosx+1

fx=4x3cosx+1

fx=4x3cosx+8

fx=4x+3cosx+2

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức zthỏa mãn điều kiện |z – (1 – 2i)| = 2 là

x22+y+12=4

x12+y+22=4

x12+y+22=2

x12+y22=4

Xem đáp án
34. Trắc nghiệm
1 điểmKhông giới hạn

Tổng các nghiệm thực của phương trình log2x2+x+1=2+log2x bằng

3

4

2

1

Xem đáp án
35. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = f(x) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau   Tìm m để phương trình 3f(x) – m = 0 có 3 nghiệm thực phân biệt (ảnh 1)

Tìm mđể phương trình 3f(x) – m = 03 nghiệm thực phân biệt

6<m<12

2<m<4

6m12

2m4

Xem đáp án
36. Trắc nghiệm
1 điểmKhông giới hạn

Gọi S là tập hợp các số tự nhiên có ba chữ số đôi một khác nhau được lập thành từ các chữ số 1;2;3;4;5;6. Cho ngẫu nhiên một số từ S, tính xác suất để số được chọn là một số chia hết cho 5.

12

14

112

16

Xem đáp án
37. Trắc nghiệm
1 điểmKhông giới hạn

Diện tích hình phẳng giới hạn bởi các đường cong y=x36x y=x2 bằng

12512

163

634

25312

Xem đáp án
38. Trắc nghiệm
1 điểmKhông giới hạn

Trên tập hợp số phức, xét phương trình z2mz+m+8=0 (m là tham số thực). Có bao nhiêu giá trị nguyên của tham số m để phương trình có hai nghiệm z1,z2 phân biệt thỏa mãn z1z12+mz2=m2m8z2?

5

11

12

6

Xem đáp án
39. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu số nguyên x  thỏa mãn

log3x2+1log3x+31322x10?

27

Vô số

28

26

Xem đáp án
40. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên của m để hàm số y=mx4+m24x2+2 có đúng một điểm cực đại và không có điểm cực tiểu?

3

0

1

2

Xem đáp án
41. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA=a2. Tính khoảng cách giữa hai đường thẳng chéo nhau AB SC Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA = a căn 2. Tính khoảng cách giữa hai đường thẳng chéo nhau AB và SC. (ảnh 1)

a217.

2a217.

a427.

a4214.

Xem đáp án
42. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1:x13=y+12=z22, d2:x42=y42=z+31. Phương trình đường vuông góc chung của hai đường thẳng d1,d2 

x22=y21=z2.

x42=y11=z2.

x22=y21=z+22.

x42=y+11=z2.

Xem đáp án
43. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số fx=e2x+1 khi x04x+2 khi x<0. Giả sử F(x) là nguyên hàm của f(x) trên  thoả mãn F(-2) = 5. Biết rằng F1+3F1=ae2+b (trong đó a,b là các số hữu tỉ). Khi đó a + b bằng

8

5

4

10

Xem đáp án
44. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình nón (N) có đỉnh S, chiều cao h = 3. Mặt phẳng (P) qua đỉnh S cắt hình nón (N) theo thiết diện là tam giác đều. Khoảng cách từ tâm đáy hình nón đến mặt phẳng (P) bằng 6. Thể tích khối nón giới hạn bởi hình nón (N) bằng

81π.

27π.

36π.

12π.

Xem đáp án
45. Trắc nghiệm
1 điểmKhông giới hạn

Gọi S là tập hợp tất cả các số phức z sao cho số phức w=z+3i1z+3+i là số thuần ảo. Xét các số phức z1,  z2S thỏa mãn z1z2=2, giá trị lớn nhất của P=z13i2z23i2 bằng

10

20

226

426

Xem đáp án
46. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình lăng trụ đứng ABC/A’B’C’ có đáy là tam giác ABC là tam giác vuông cân tại A,BC = a. Gọi M là trung điểm của cạnhAA, biết hai mặt phẳng (MBC) (MB’C’)vuông góc với nhau. Thể tích khối lăng trụABC.A’B’C’bằng

a38

a34

a3224

a328

Xem đáp án
47. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gianOxyz, cho đường thẳng d:x+11=y+21=z11 và mặt cầu S:x2+y2+z22x4y+6z13=0. Lấy điểm M(a;b;c) với a<0 thuộc đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, Clà tiếp điểm)thỏa mãn AMB^=60°;BMC^=90°;CMA^=120°. Tổng a+b+c bằng

103

1

-2

2

Xem đáp án
48. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) thỏa mãn f(x)x.f'(x).lnx=2x2.f2x,x1;+. Biết f(x)>0,x1;+ f(e)=1e2. Tính diện tích S của hình phẳng giới hạn bởi các đường y=x.f(x),y=0,x=e,x=e2.

S=12

S=2

S=32

S=53

Xem đáp án
49. Trắc nghiệm
1 điểmKhông giới hạn

Có tất cả bao nhiêu cặp số nguyên dương (x;y) với y20 thỏa mãn:

log2023x+1y+1+x2y2+2xy2y+2y3?

380

210

420

200

Xem đáp án
50. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên thuộc đoạn [-2023;2023] của tham số thực mđể hàm số y=e3x3m+2e2x+3mm+4ex đồng biến trên khoảng ;ln2?

4047

2023

2022

4045

Xem đáp án
© All rights reserved VietJack