Dạng 4. Tổng hợp có đáp án
10 câu hỏi
Cho tam giác ABC, phân giác AD. Qua D kẻ đường thẳng song song với AC cắt ABtại E, qua D kẻ đường thẳng song song với ABcắt AC tại F. Chứng minh EF là phân giác của
Cho hình chữ nhật ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
a) EFGH là hình gì? Vì sao?
b) Chứng minh AC, BD, EG, FH đồng qui.
Cho tam giác ABC cân tại A, trung tuyến AM. Qua M kẻ đường thẳng song song với AC cắt AB tại P và đường thẳng song song với AB cắt AC tại Q.
a) Tứ giác APMQ là hình gì? Vì sao?
b) Chứng minh PQ // BC.
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
a) Chứng minh E và F đối xứng với nhau qua AB.
b) Chứng minh tứ giác MEBF là hình thoi
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Cho tam giác ABC nhọn, các đường cao BD, CE. Tia phân giác của các góc và cắt nhau tại O, và lần lượt cắt AC, AB tại N, M. Tia BN cắt CE tại K, tia CM cắt BD tại H: Chứng minh rằng:
a) BN CM;
b) Tứ giác MNFIK là hình thoi.








