2048.vn

Dạng 2: Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản có đáp án
Quiz

Dạng 2: Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản có đáp án

VietJack
VietJack
ToánLớp 1121 lượt thi
84 câu hỏi
1. Trắc nghiệm
1 điểm

Cho dãy số (un) với Cho dãy số (un) với un = n/4^n và un+ 1 / un < 1/2. Chọn giá trị đúng của lim un trong các số sau: (ảnh 1) Cho dãy số (un) với un = n/4^n và un+ 1 / un < 1/2. Chọn giá trị đúng của lim un trong các số sau: (ảnh 2). Chọn giá trị đúng của Cho dãy số (un) với un = n/4^n và un+ 1 / un < 1/2. Chọn giá trị đúng của lim un trong các số sau: (ảnh 3) trong các số sau:

14

12

0

1

Xem đáp án
2. Trắc nghiệm
1 điểm

Kết quả đúng của Kết quả đúng của lim (5 - n cos2n/ n^2 + 1) là: A. 4 B. 5 C. –4. D. 1/4 (ảnh 1) là:

4

5

-4

14

Xem đáp án
3. Trắc nghiệm
1 điểm

Giá trị của Giá trị của A = lim 2n+1/1-3n bằng: (ảnh 1) bằng:

+

-

-23

1

Xem đáp án
4. Trắc nghiệm
1 điểm

Giá trị của Giá trị của B = lim 4n^2 + 3n + 1/ (3n-1)^2 bằng: A. + vô cùng  B. - vô cùng  C. 4/9  D. 1 (ảnh 1) bằng:

+

-

49

0

Xem đáp án
5. Trắc nghiệm
1 điểm

Kết quả đúng của Kết quả đúng của lim -n^2 + 2n + 1/ căn bậc hai 3n^4 + 2 là A. -căn bậc hai 3/3 B. -2/3 C. -1/2 D. 1/2 (ảnh 1) 

Kết quả đúng của lim -n^2 + 2n + 1/ căn bậc hai 3n^4 + 2 là A. -căn bậc hai 3/3 B. -2/3 C. -1/2 D. 1/2 (ảnh 2)

Kết quả đúng của lim -n^2 + 2n + 1/ căn bậc hai 3n^4 + 2 là A. -căn bậc hai 3/3 B. -2/3 C. -1/2 D. 1/2 (ảnh 3)

Kết quả đúng của lim -n^2 + 2n + 1/ căn bậc hai 3n^4 + 2 là A. -căn bậc hai 3/3 B. -2/3 C. -1/2 D. 1/2 (ảnh 4)

Kết quả đúng của lim -n^2 + 2n + 1/ căn bậc hai 3n^4 + 2 là A. -căn bậc hai 3/3 B. -2/3 C. -1/2 D. 1/2 (ảnh 5)

Xem đáp án
6. Trắc nghiệm
1 điểm

Giới hạn dãy số Giới hạn dãy số (un) với un = 3n - n^4/ 4n-5 là: A. + vô cùng  B. - vô cùng C. 3/4 D. 0 (ảnh 1) với Giới hạn dãy số (un) với un = 3n - n^4/ 4n-5 là: A. + vô cùng  B. - vô cùng C. 3/4 D. 0 (ảnh 2) là:

-

+

34

0

Xem đáp án
7. Trắc nghiệm
1 điểm

Chọn kết quả đúng của Chọn kết quả đúng của lim căn bậc hai n^3 - 2n + 5/ 3 + 5n A. 5 B. 2/5 C. + vô cùng  D. - vô cùng  (ảnh 1):

5

25

-

+

Xem đáp án
8. Trắc nghiệm
1 điểm

Giá trị của Giá trị của A = lim 2n^2 + 3n + 1/ 3n^2 - n + 2 bằng: A. + vô cùng  B. - vô cùng C. 2/3 D. 1 (ảnh 1) bằng:

+

-

23

1

Xem đáp án
9. Trắc nghiệm
1 điểm

Giá trị của Giá trị của B = lim căn bậc hai n^2 + 2n / n - căn bậc hai 3n^2 + 1 bằng: A. + vô cùng  B. - vô cùng  C. 0 D. 1/ 1 - căn bậc hai 3 (ảnh 1) bằng:

+

-

0

Giá trị của B = lim căn bậc hai n^2 + 2n / n - căn bậc hai 3n^2 + 1 bằng: A. + vô cùng B. - vô cùng C. 0 D. 1/ 1 - căn bậc hai 3 (ảnh 3)

Xem đáp án
10. Trắc nghiệm
1 điểm

Giá trị của Giá trị của C = lim (2n^2 + 1)^4 (n + 2)^9 / n^17 + 1 bằng: A. + vô cùng  B. - vô cùng  C. 16  D. 1 (ảnh 1) bằng:

+

-

16

1

Xem đáp án
11. Trắc nghiệm
1 điểm

Giá trị của Giá trị của D = lim căn bậc hai n^2 + 1 - căn bậc ba 3n^3 + 2/ căn bậc bốn 2n^4 + n + 2 - n bằng: (ảnh 1) bằng:

+

-

Giá trị của D = lim căn bậc hai n^2 + 1 - căn bậc ba 3n^3 + 2/ căn bậc bốn 2n^4 + n + 2 - n bằng: (ảnh 3)

1

Xem đáp án
12. Trắc nghiệm
1 điểm

Giá trị của Giá trị của C = lim căn bậc bốn 3n^3 + 1 - n/ căn bậc hai 2n^4 + 3n + 1 + n bằng: (ảnh 1) bằng:

+

-

0

1

Xem đáp án
13. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của F = lim (n-2)^7 (2n+ 1)^3 / (n^2 + 2)^5 bằng: A. + vô cùng  B. - vô cùng  C. 8  D. 1 (ảnh 1) bằng:

+

-

0

1

Xem đáp án
14. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của C = lim n^3 + 1/ n(2n+1) ^2 bằng: A. + vô cùng  B. - vô cùng  C. 1/4  D. 1 (ảnh 1) bằng:

+

-

0

1

Xem đáp án
15. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của D = llim n^3 -3n^2 + 2/ n^4 + 4n^3 + 1 bằng: A. + vô cùng  B. - vô cùng  C. 0  D. 1 (ảnh 1) bằng:

+

-

0

1

Xem đáp án
16. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của E = lim căn bậc hai n^3 + 2n + 1/ n + 2 bằng: A. + vô cùng  B. - vô cùng  C. 0  D. 1 (ảnh 1) bằng:

+

-

0

1

Xem đáp án
17. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của F = lim căn bậc bốn n^4 - 2n + 1 + 2n/ căn bậc ba 3n^3 + n - n bằng: (ảnh 1) bằng:

+

-

Giá trị của F = lim căn bậc bốn n^4 - 2n + 1 + 2n/ căn bậc ba 3n^3 + n - n bằng: (ảnh 2)

1

Xem đáp án
18. Trắc nghiệm
1 điểm

Cho dãy số Cho dãy số un với un = (n-1) căn bậc hai 2n+ 2/n^4 + n^2 - 1 . Chọn kết quả đúng của un là: A. - vô cùng  B. 0 C. 1 D. + vô cùng  (ảnh 1) với Cho dãy số un với un = (n-1) căn bậc hai 2n+ 2/n^4 + n^2 - 1 . Chọn kết quả đúng của un là: A. - vô cùng  B. 0 C. 1 D. + vô cùng  (ảnh 2). Chọn kết quả đúng của Cho dãy số un với un = (n-1) căn bậc hai 2n+ 2/n^4 + n^2 - 1 . Chọn kết quả đúng của un là: A. - vô cùng  B. 0 C. 1 D. + vô cùng  (ảnh 3) là:

-

0

1

+

Xem đáp án
19. Trắc nghiệm
1 điểm

lim 10/ căn bậc hai n^4 + n^2 + 1 bằng : A. + vô cùng B. 10 C. 0 D. - vô cùng  (ảnh 1) bằng:

+

10

0

-

Xem đáp án
20. Trắc nghiệm
1 điểm

Tính giới hạn: Tính giới hạn: lim căn bậc hai n+ 1 - 4/ căn bậc hai n + 1 + n A. 1 B. 0 C. -1 D. 1/2 (ảnh 1)

1

0

-1

Tính giới hạn: lim căn bậc hai n+ 1 - 4/ căn bậc hai n + 1 + n A. 1 B. 0 C. -1 D. 1/2 (ảnh 3)

Xem đáp án
21. Trắc nghiệm
1 điểm

Tính giới hạn: Tính giới hạn: lim 1 + 3 + 5 + ... + (2n+1) / 3n^2 + 4 A. 0 B. 1/3 C. 2/3 D. 1 (ảnh 1)

0

Tính giới hạn: lim 1 + 3 + 5 + ... + (2n+1) / 3n^2 + 4 A. 0 B. 1/3 C. 2/3 D. 1 (ảnh 3)

Tính giới hạn: lim 1 + 3 + 5 + ... + (2n+1) / 3n^2 + 4 A. 0 B. 1/3 C. 2/3 D. 1 (ảnh 4)

1

Xem đáp án
22. Trắc nghiệm
1 điểm

Chọn kết quả đúng của Chọn kết quả đúng của lim căn bậc hai 3 + n^2 -1 /3 + n^2 - 1/2n^2 A. 4 B. 3. C. 2 D. `1/2 (ảnh 1).

4

3

2

12

Xem đáp án
23. Trắc nghiệm
1 điểm

Giá trị của Giá trị của D = lim akn^k + .... + a1n + a0/ bpn^p +....+ b1n + b0  (Trong đó k, p là các số nguyên dương; akbp khác 0 ). (ảnh 1) (Trong đó k, p là các số nguyên dương; Giá trị của D = lim akn^k + .... + a1n + a0/ bpn^p +....+ b1n + b0  (Trong đó k, p là các số nguyên dương; akbp khác 0 ). (ảnh 2)).

+

-

Đáp án khác

1

Xem đáp án
24. Trắc nghiệm
1 điểm

Kết quả đúng của Kết quả đúng của 2 - 5^n-2 / 3^n + 2.5^n là: A. -5/2 B. -1/50 C. 5/2 D. -25/2 (ảnh 1) là:

Kết quả đúng của 2 - 5^n-2 / 3^n + 2.5^n là: A. -5/2 B. -1/50 C. 5/2 D. -25/2 (ảnh 3)

Kết quả đúng của 2 - 5^n-2 / 3^n + 2.5^n là: A. -5/2 B. -1/50 C. 5/2 D. -25/2 (ảnh 4)

Kết quả đúng của 2 - 5^n-2 / 3^n + 2.5^n là: A. -5/2 B. -1/50 C. 5/2 D. -25/2 (ảnh 5)

Kết quả đúng của 2 - 5^n-2 / 3^n + 2.5^n là: A. -5/2 B. -1/50 C. 5/2 D. -25/2 (ảnh 6)

Xem đáp án
25. Trắc nghiệm
1 điểm

lim 3^n - 4.2^n-1 - 3/ 3.2^n + 4^n bằng A. + vô cùng  B. - vô cùng  C. 0  D. 1 (ảnh 1) bằng:

+

-

0

1

Xem đáp án
26. Trắc nghiệm
1 điểm

Giá trị của Giá trị của C = lim 3.2^n - 3^n / 2^n+1 + 3^n+1 bằng: A. + vô cùng  B. - vô cùng  C. -1/3  D. 1 (ảnh 1) bằng:

+

-

Giá trị của C = lim 3.2^n - 3^n / 2^n+1 + 3^n+1 bằng: A. + vô cùng B. - vô cùng C. -1/3 D. 1 (ảnh 3)

1

Xem đáp án
27. Trắc nghiệm
1 điểm

Giá trị đúng của Giá trị đúng của lim (3^n - 5^n) là: A. + vô cùng  B. - vô cùng  C. 2  D. -2 (ảnh 1) là:

-

+

2

-2

Xem đáp án
28. Trắc nghiệm
1 điểm

Giá trị của Giá trị của K = lim 3.2^n - 3^n / 2^n+1 + 3^n+1 bằng: A. -1/3 B. - vô cùng C. 2 D. 1 (ảnh 1) bằng:

Giá trị của K = lim 3.2^n - 3^n / 2^n+1 + 3^n+1 bằng: A. -1/3 B. - vô cùng C. 2 D. 1 (ảnh 3)

-

2

1

Xem đáp án
29. Trắc nghiệm
1 điểm

lim 5^n - 1 / 3^n + 1 bằng A. + vô cùng B. 1 C. 0 D. - vô cùng  (ảnh 1) bằng:

+

1

0

-

Xem đáp án
30. Trắc nghiệm
1 điểm

lim căn bậc bốn 4^n + 2^n+1/ 3^n + 4^n+2 bằng A.0 B. 1/2 C. 1/4 D. dương vô cùng (ảnh 1) bằng:

0

lim căn bậc bốn 4^n + 2^n+1/ 3^n + 4^n+2 bằng A.0 B. 1/2 C. 1/4 D. dương vô cùng (ảnh 6)

lim căn bậc bốn 4^n + 2^n+1/ 3^n + 4^n+2 bằng A.0 B. 1/2 C. 1/4 D. dương vô cùng (ảnh 7)

+

Xem đáp án
31. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của. C = lim căn bậc hai 3.3^n + 4^n/ 3^n+1 + 4^n+1 bằng:  A. dương vô cùng B. 1/2 C. 0 D. 1 (ảnh 1) bằng:

+

12

0

1

Xem đáp án
32. Trắc nghiệm
1 điểm

Cho các số thực a,b thỏa Cho các số thực a,b thỏa trị tuyệt đối a < 1, trị tuyệt đối b < 1. Tìm giới hạn I = lim 1 + a+ a^2 + ... a^n/ 1 + b + b^2 + ... + b^n (ảnh 1). Tìm giới hạn Cho các số thực a,b thỏa trị tuyệt đối a < 1, trị tuyệt đối b < 1. Tìm giới hạn I = lim 1 + a+ a^2 + ... a^n/ 1 + b + b^2 + ... + b^n (ảnh 2).

+

-

Cho các số thực a,b thỏa trị tuyệt đối a < 1, trị tuyệt đối b < 1. Tìm giới hạn I = lim 1 + a+ a^2 + ... a^n/ 1 + b + b^2 + ... + b^n (ảnh 9)

1

Xem đáp án
33. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số A = lim ak.n^k + ak-1.n^k-1 + .... + a1n + a0/ bp.n^p + bp-1.n^p-1 +...+ b1n + b0  với akbp khác 0 (ảnh 1) với Tính giới hạn của dãy số A = lim ak.n^k + ak-1.n^k-1 + .... + a1n + a0/ bp.n^p + bp-1.n^p-1 +...+ b1n + b0  với akbp khác 0 (ảnh 2).

+

-

Đáp án khác

1

Xem đáp án
34. Trắc nghiệm
1 điểm

lim (n^2 sin n pi/5 - 2n^3) bằng:  A. dương vô cùng B. 0 C. -2 D.  âm vô cùng (ảnh 1) bằng:

+

0

-2

-

Xem đáp án
35. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của. M = lim (căn bậc hai n^2 + 6n -n ) bằng:A. dương vô cùng B. âm vô cùng C. 3 D. 1 (ảnh 1)bằng:

-

-

3

1

Xem đáp án
36. Trắc nghiệm
1 điểm

Giá trị của Giá trị của H = lim (căn bậc hai n^2 + n + 1 - n) bằng: A. dương vô cùng B. âm vô cùng C. 1/2 D. 1 (ảnh 1) bằng:

+

-

12

1

Xem đáp án
37. Trắc nghiệm
1 điểm

Giá trị của Giá trị của K = lim n (căn bậc hai n^2 + 1 -n) bằng: A. dương vô cùng B. âm vô cùng C. 1/2 D. 1 (ảnh 1) bằng:

+∞

-∞

12

1

Xem đáp án
38. Trắc nghiệm
1 điểm

Giá trị đúng của Giá trị đúng của lim ( căn bậc hai n^2 - 1 - căn bậc hai 3n^2 + 2) là: A. dương vô cùng B. âm vô cùng C. 0 D. 1 (ảnh 1) là:

+∞

-∞

0

1

Xem đáp án
39. Trắc nghiệm
1 điểm

Giá trị của Giá trị của A = lim (căn bậc hai n^2 + 6n - n) bằng: A. dương vô cùng B. âm vô cùng C. 3 D. 1 (ảnh 1) bằng:

+∞

-∞

3

1

Xem đáp án
40. Trắc nghiệm
1 điểm

Giá trị của Giá trị của B = lim (căn bậc ba n^3 + 9n^2 - n) bằng: A. dương vô cùng B. âm vô cùng C. 0 D. 3 (ảnh 1) bằng:

+∞

-∞

0

3

Xem đáp án
41. Trắc nghiệm
1 điểm

Giá trị của Giá trị của D = lim (căn bậc hai n^2 + 2n - căn bậc ba n^3 + 2n^2) bằng: A. dương vô cùng B. âm vô cùng C. 1/3 D. 1 (ảnh 1) bằng:

+∞

-∞

13

1

Xem đáp án
42. Trắc nghiệm
1 điểm

Giá trị của Giá trị của M = lim (căn bậc ba 1 - n^2 - 8n^3 + 2n) bằng: A. -1/12 B. âm vô cùng C. 0 D, 1 (ảnh 1) bằng:

-112

-∞

0

1

Xem đáp án
43. Trắc nghiệm
1 điểm

Giá trị của Giá trị của N = lim (căn bậc hai 4n^2 + 1 - căn bậc ba 8n^3 + n) bằng: A. dương vô cùng B. âm vô cùng C. 0 D. 1 (ảnh 1) bằng:

+∞

-∞

0

1

Xem đáp án
44. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của K = lim (căn bậc ba n^3 + n^2 -1 - 3 căn bậc hai 4n^2 + n + 1 + 5n) bằng: A. dương vô cùng B. âm vô cùng C. -5/12 D. 1 (ảnh 1) bằng:

+∞

-∞

-512

1

Xem đáp án
45. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của N = lim (căn bậc ba n^3 + 3n^2 + 1 - n) bằng: A. dương vô cùng B. âm vô cùng C. 0 D. 1 (ảnh 1) bằng:

+∞

-∞

0

1

Xem đáp án
46. Trắc nghiệm
1 điểm

Giá trị đúng của Giá trị đúng của lim [ căn bậc hai n (căn bậc hai n + 1 - căn bậc hai n - 1)] là: A. -1 B. 0 C. 1 D. dương vô cùng (ảnh 1) là:

-1

0

1

+∞

Xem đáp án
47. Trắc nghiệm
1 điểm

Giá trị của Giá trị của H = lim n (căn bậc ba 8n^3 + n - căn bậc hai 4n^2 + 3) bằng: A. dương vô cùng B. âm vô cùng C. -2/3 D. 1 (ảnh 1) bằng:

+∞

-∞

-23

1

Xem đáp án
48. Trắc nghiệm
1 điểm

Giá trị của Giá trị của A = lim (căn bậc hai n^2 + 2n + 2 + n) bằng: A. dương vô cùng B. âm vô cùng C. 2 D. 1 (ảnh 1) bằng:

+∞

-∞

2

1

Xem đáp án
49. Trắc nghiệm
1 điểm

lim căn bậc năm 200 - 3n^5 + 2n^2 bằng A. 0 B. 1 C. dương vô cùng D. âm vô cùng (ảnh 1) bằng:

0

1

+∞

-∞

Xem đáp án
50. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của. A = lim 2n^3 + sin2n - 1/ n^3 + 1 bằng: A. dương vô cùng B. âm vô cùng C. 2 D. 1 (ảnh 1) bằng:

+∞

-∞

2

1

Xem đáp án
51. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của B = lim căn bậc n n giai thừa / căn bậc hai n^3 + 2n bằng: A. dương vô cùng B. âm vô cùng C. 0 D. 1 (ảnh 1) bằng:

+∞

0

0

1

Xem đáp án
52. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của D = lim n + 1/ n^2 (căn bậc hai 3n^2 + 2  - căn bậc hai 3n^2 -1) bằng: A. dương vô cùng B. âm vô cùng C. 2/ căn bậc hai 3 D. 1 (ảnh 1) bằng:

+∞

-∞

23

1

Xem đáp án
53. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của E = lim căn bậc hai n^2 + n + 1 - 2n bằng: A. dương vô cùng B. âm vô cùng C. 0 D. 1 (ảnh 1) bằng:

+∞

-∞

0

1

Xem đáp án
54. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của F = lim (căn bậc hai n + 1 + n) bằng: A. dương vô cùng B. âm vô cùng C. 0 D. 1 (ảnh 1) bằng:

+∞

-∞

0

1

Xem đáp án
55. Trắc nghiệm
1 điểm

Giá trị của. Giá trị của H = lim (căn bậc k n^2 +1 - căn bậc p n^2 - 1) bằng: A. dương vô cùng B. âm vô cùng C. đáp án khác D. 1 (ảnh 1) bằng:

+∞

-∞

Đáp án khác

1

Xem đáp án
56. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số un = 1/ 2 căn bậc hai 1 + căn bậc hai 2 + 1/ 3 căn bậc hai 2 + 2 căn bậc hai 3 + ... + 1/ (n+1) căn bậc hai n + n căn bậc hai n + 1 (ảnh 1):

+∞

-∞

0

1

Xem đáp án
57. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số un = (n+1) căn bậc hai 1^3 + 2^3 + ... + n^3/ 3n^3 + n + 2 A. dương vô cùng B. âm vô cùng C. 1/9 D. 1 (ảnh 1):

+∞

-∞

19

1

Xem đáp án
58. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số un = (1-1/T1)(1-1/T2)... (1-1/Tn) trong đó Tn = n(n/+1)/2 A. dương vô cùng B. âm vô cùng C. 1/3 D. 1 (ảnh 1) trong đó Tính giới hạn của dãy số un = (1-1/T1)(1-1/T2)... (1-1/Tn) trong đó Tn = n(n/+1)/2 A. dương vô cùng B. âm vô cùng C. 1/3 D. 1 (ảnh 2)

+∞

-∞

13

1

Xem đáp án
59. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số un = 2^3 - 1/2^3 + 1 . 3^3 -1/ 3^3 +1 .... n^3 -1/n^3+ 1 A. dương vô cùng B. âm vô cùng C. 2/3 D. 1 (ảnh 1)

+∞

-∞

23

1

Xem đáp án
60. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số un = tổng từ k =1 đến n 2k-1/2^k A. dương vô cùng B. âm vô cùng C. 3 D. 1 (ảnh 1)

+∞

-∞

3

1

Xem đáp án
61. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số un = q + 2q^2 + ... + nq^n với trị tuyệt đối q < 1 A. dương vô cùng B. âm vô cùng (ảnh 1) với Tính giới hạn của dãy số un = q + 2q^2 + ... + nq^n với trị tuyệt đối q < 1 A. dương vô cùng B. âm vô cùng (ảnh 2)  

+∞

-∞

Tính giới hạn của dãy số un = q + 2q^2 + ... + nq^n với trị tuyệt đối q < 1 A. dương vô cùng B. âm vô cùng (ảnh 6)

Tính giới hạn của dãy số un = q + 2q^2 + ... + nq^n với trị tuyệt đối q < 1 A. dương vô cùng B. âm vô cùng (ảnh 7)

Xem đáp án
62. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số un = tổng từ k = 1 đến n của n/n^2 + k  A. dương vô cùng B. âm vô cùng (ảnh 1)

+∞

-∞

3

1

Xem đáp án
63. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số B= lim căn bậc ba n^6 + n + 1 - 4 căn bậc hai n^4 + 2n - 1/ (2n + 3)^2 A. dương vô cùng B. âm vô cùng (ảnh 1)

+∞

-∞

3

-34

Xem đáp án
64. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số C = lim (căn bậc hai 4n^2 + n + 1 - 2n) A. dương vô cùng B. âm vô cùng (ảnh 1)

+∞

-∞

3

14

Xem đáp án
65. Trắc nghiệm
1 điểm

Tính giới hạn của dãy số Tính giới hạn của dãy số D = lim (căn bậc hai n^2 + n + 1 - 2 căn bậc ba n^3 + n^2 - 1 + n) A. dương vô cùng B. âm vô cùng (ảnh 1)

+∞

-∞

-16

1

Xem đáp án
66. Trắc nghiệm
1 điểm

Cho dãy số Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 1) xác định bởi Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 2)

Đặt Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 3). Tính Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 4)

+∞

-∞

2

1

Xem đáp án
67. Trắc nghiệm
1 điểm

Cho dãy Cho dãy (xk)  được xác định như sau: xk = 1/2 giai thừa + 2/ 3 giai thừa + ... + k/(k+1) giai thừa Tìm lim un với un = căn bậc n x1^n + x2^n + ... + x2011^n (ảnh 1) được xác định như sau: Cho dãy (xk)  được xác định như sau: xk = 1/2 giai thừa + 2/ 3 giai thừa + ... + k/(k+1) giai thừa Tìm lim un với un = căn bậc n x1^n + x2^n + ... + x2011^n (ảnh 2)

Tìm Cho dãy (xk)  được xác định như sau: xk = 1/2 giai thừa + 2/ 3 giai thừa + ... + k/(k+1) giai thừa Tìm lim un với un = căn bậc n x1^n + x2^n + ... + x2011^n (ảnh 3) với Cho dãy (xk)  được xác định như sau: xk = 1/2 giai thừa + 2/ 3 giai thừa + ... + k/(k+1) giai thừa Tìm lim un với un = căn bậc n x1^n + x2^n + ... + x2011^n (ảnh 4).

+∞

-∞

Cho dãy (xk) được xác định như sau: xk = 1/2 giai thừa + 2/ 3 giai thừa + ... + k/(k+1) giai thừa Tìm lim un với un = căn bậc n x1^n + x2^n + ... + x2011^n (ảnh 11)

Cho dãy (xk) được xác định như sau: xk = 1/2 giai thừa + 2/ 3 giai thừa + ... + k/(k+1) giai thừa Tìm lim un với un = căn bậc n x1^n + x2^n + ... + x2011^n (ảnh 12)

Xem đáp án
68. Trắc nghiệm
1 điểm

Cho dãy số Cho dãy số (un) được xác định bởi: u0 = 2011 un+1 = un + 1/un^2. Tìm lim un^3/n  A. dương vô cùng B. âm vô cùng (ảnh 1) được xác định bởi: Cho dãy số (un) được xác định bởi: u0 = 2011 un+1 = un + 1/un^2. Tìm lim un^3/n  A. dương vô cùng B. âm vô cùng (ảnh 2). Tìm Cho dãy số (un) được xác định bởi: u0 = 2011 un+1 = un + 1/un^2. Tìm lim un^3/n  A. dương vô cùng B. âm vô cùng (ảnh 3).

+∞

-∞

3

1

Xem đáp án
69. Trắc nghiệm
1 điểm

Cho dãy x > 0 xác định như sau: Cho dãy x > 0 xác định như sau: f(x) = căn bậc hai x +1 - 1/x Tìm (0; dương vô cùng) . A. dương vô cùng B. âm vô cùng (ảnh 1). Tìm Cho dãy x > 0 xác định như sau: f(x) = căn bậc hai x +1 - 1/x Tìm (0; dương vô cùng) . A. dương vô cùng B. âm vô cùng (ảnh 2).

+∞

-∞

2010

1

Xem đáp án
70. Trắc nghiệm
1 điểm

Tìm Tìm lim un biết un = n căn bậc hai 1 + 3 + 5 + ... + (2n-1)/2n^2 +1  A. dương vô cùng B. âm vô cùng (ảnh 1) biết Tìm lim un biết un = n căn bậc hai 1 + 3 + 5 + ... + (2n-1)/2n^2 +1  A. dương vô cùng B. âm vô cùng (ảnh 2)

+∞

-∞

12

1

Xem đáp án
71. Trắc nghiệm
1 điểm

Tìm Tìm lim un biết f(x) = căn bậc ba x-2 + 2x-1 khi x khác 1 và 3m-2 khi x = 1 A. dương vô cùng B. âm vô cùng (ảnh 1) biết Tìm lim un biết f(x) = căn bậc ba x-2 + 2x-1 khi x khác 1 và 3m-2 khi x = 1 A. dương vô cùng B. âm vô cùng (ảnh 2)

+∞

-∞

2

Tìm lim un biết f(x) = căn bậc ba x-2 + 2x-1 khi x khác 1 và 3m-2 khi x = 1 A. dương vô cùng B. âm vô cùng (ảnh 6)

Xem đáp án
72. Trắc nghiệm
1 điểm

Tìm Tìm un biết f(x) = căn bậc hai x +1 -1 khi x > 0 và 2x^2 + 3m + 1 khi x nhỏ hơn bằng 0  A. dương vô cùng B. âm vô cùng (ảnh 1) biết Tìm un biết f(x) = căn bậc hai x +1 -1 khi x > 0 và 2x^2 + 3m + 1 khi x nhỏ hơn bằng 0  A. dương vô cùng B. âm vô cùng (ảnh 2)

+∞

-∞

2

1

Xem đáp án
73. Trắc nghiệm
1 điểm

Tìm Tìm un biết f(x) =  căn bậc hai 2x - 4 + 3 khi x lớn hơn bằng 2 và x+1/ x^2-2mx + 3m + 2 khi x < 2  trong đó x khác 1 (ảnh 1) biết Tìm un biết f(x) =  căn bậc hai 2x - 4 + 3 khi x lớn hơn bằng 2 và x+1/ x^2-2mx + 3m + 2 khi x < 2  trong đó x khác 1 (ảnh 2) trong đó Tìm un biết f(x) =  căn bậc hai 2x - 4 + 3 khi x lớn hơn bằng 2 và x+1/ x^2-2mx + 3m + 2 khi x < 2  trong đó x khác 1 (ảnh 3).

+∞

-∞

13

1

Xem đáp án
74. Trắc nghiệm
1 điểm

Tìm Tìm un biết un = tổng từ k = 1 đến n của 1/ căn bậc hai n^2 + k A. dương vô cùng B. âm vô cùng C. 3 D. 1 (ảnh 1) biết Tìm un biết un = tổng từ k = 1 đến n của 1/ căn bậc hai n^2 + k A. dương vô cùng B. âm vô cùng C. 3 D. 1 (ảnh 2)

+∞

-∞

3

1

Xem đáp án
75. Trắc nghiệm
1 điểm

Tìm Tìm lim un biết un = căn bậc hai 2 . căn bậc hai 2.... căn bậc hai 2 với n dấu căn  A. dương vô cùng B. âm vô cùng (ảnh 1) biết Tìm lim un biết un = căn bậc hai 2 . căn bậc hai 2.... căn bậc hai 2 với n dấu căn  A. dương vô cùng B. âm vô cùng (ảnh 2)

+∞

-∞

2

1

Xem đáp án
76. Trắc nghiệm
1 điểm

Cho dãy số Cho dãy số A = (x1^2 + 1/2x1x2)^2 + (1/4x1x2 + x2^2)^2 + 1/2x1^2x2^2+ 3 > 0 được xác định như sau x1 = x2. Đặt x nhỏ hơn bằng 3/2. (ảnh 1) được xác định như sau Cho dãy số A = (x1^2 + 1/2x1x2)^2 + (1/4x1x2 + x2^2)^2 + 1/2x1^2x2^2+ 3 > 0 được xác định như sau x1 = x2. Đặt x nhỏ hơn bằng 3/2. (ảnh 2).

Đặt Cho dãy số A = (x1^2 + 1/2x1x2)^2 + (1/4x1x2 + x2^2)^2 + 1/2x1^2x2^2+ 3 > 0 được xác định như sau x1 = x2. Đặt x nhỏ hơn bằng 3/2. (ảnh 3). Tìm Cho dãy số A = (x1^2 + 1/2x1x2)^2 + (1/4x1x2 + x2^2)^2 + 1/2x1^2x2^2+ 3 > 0 được xác định như sau x1 = x2. Đặt x nhỏ hơn bằng 3/2. (ảnh 4).

+∞

-∞

12

1

Xem đáp án
77. Trắc nghiệm
1 điểm

Cho Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 1). Kí hiệu Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 2) là số cặp số Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 3)

 sao cho Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 4). Tìm Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 5)

+∞

-∞

Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 18)

Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 19)

Xem đáp án
78. Trắc nghiệm
1 điểm

Cho dãy số có giới hạn (un) xác định bởi  Cho dãy số  có giới hạn (un) xác định bởi : u1 = 1/2 và un+1 = 1/2-un, n lớn hơn bằng 1. Tìm kết quả đúng của lim un (ảnh 1). Tìm kết quả đúng của Cho dãy số  có giới hạn (un) xác định bởi : u1 = 1/2 và un+1 = 1/2-un, n lớn hơn bằng 1. Tìm kết quả đúng của lim un (ảnh 2) .

0

1

-1

12

Xem đáp án
79. Trắc nghiệm
1 điểm

Tìm giá trị đúng của Tìm giá trị đúng của S = căn bậc hai 2 (1 + 1/2 + 1/4 + 1/8 + ... + 1/2^n + ....) A. căn bậc hai 2+ 1 B. 2 C. 2 căn bậc hai 2 D. 1/2 (ảnh 1)

2 + 1

2

22

12

Xem đáp án
80. Trắc nghiệm
1 điểm

Tính giới hạn: Tính giới hạn: lim [ 1/1.2 + 1/2.3 + ... + 1/n(n+ 1)] A. 0 B. 1 C. 3/2 D. không giới hạn (ảnh 1)

0

1

32

Không có giới hạn.

Xem đáp án
81. Trắc nghiệm
1 điểm

Tính giới hạn: Tính giới hạn: lim [1/1.3 + 1/3.5 + ... + 1/n(2n+1)] A. 1 B. 0 C. 2/3 D. 2 . Chọn B Đặt A = 1/1.3 + 1/3.5 + ... + 1/n(2n+1) (ảnh 1)

1

0

23

2

Xem đáp án
82. Trắc nghiệm
1 điểm

Tính giới hạn: Tính giới hạn:  lim [1/1.3 + 1/2.4 + .... + 1/n(n+2)] A. 3/4 B. 1 C. 0 D. 2/3 Chọn A  lim [1/1.3 + 1/2.4 + .... + 1/n(n+2)] (ảnh 1)

34

1

0

23

Xem đáp án
83. Trắc nghiệm
1 điểm

Tính giới hạn: Tính giới hạn: lim [1/1.4 + 1/2.5 + ... + 1/n(n+3)] A. 11/18 B.2 C. 1 D. 3/2 Chọn A Cách 1: lim [1/1.4 + 1/2.5 + ... + 1/n(n+3)] (ảnh 1).

1118

2

1

32

Xem đáp án
84. Trắc nghiệm
1 điểm

Tính giới hạn: Tính giới hạn: lim [(1-1/2^2)( 1-1/3^2) ... (1 - 1/n^2)] A. 1 B. 1/2 C. 1/4 D. 3/2 Chọn B.  Cách 1:  lim [(1-1/2^2)( 1-1/3^2) ... (1 - 1/n^2)] (ảnh 1).

1

12

14

32

Xem đáp án
© All rights reserved VietJack