25 CÂU HỎI
Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng
A.
B.
C.
D.
Trong một đợt kiểm tra vệ sinh an toàn thực phẩm của ngành y tế tại chợ X, ban quản lý chợ lấy ra 15 mẫu thịt lợn trong đó có 4 mẫu ở quầy A, 5 mẫu ở quầy B, 6 mẫu ở quầy C. Đoàn kiểm tra lấy ngẫu nhiên 4 mẫu để phân tích xem trong thịt lợn có chứa hóa chất tạo nạc hay không. Xác suất để mẫu thịt của cả 3 quầy A, B, C đều được chọn bằng
A.
B.
C.
D.
Có hai hộp cùng chứa các quả cầu. Hộp thứ nhất có 7 quả cầu đỏ, 5 quả cầu xanh. Hộp thứ hai có 6 quả cầu đỏ, 4 quả cầu xanh. Từ mỗi hộp lấy ra ngẫu nhiên 1 quả cầu. Tính xác suất để 2 quả cầu lấy ra cùng màu đỏ.
A.
B.
C.
D.
Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên
A.
B.
C.
D.
Cho đa giác đều 16 đỉnh. Hỏi có bao nhiêu tam giác vuông có ba đỉnh là ba đỉnh của đa giác đều đó?
A. 560
B. 112
C. 121
D. 128
Gọi S là tập hợp tất cả các số tự nhiên có 3 chữ số được lập từ tập . Rút ngẫu nhiên một số thuộc tập S. Tính xác suất để rút được số mà trong số đó, chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước
A.
B.
C.
D.
Lớp 12A có 20 bạn nữ, lớp 12B có 16 bạn nam. Có bao nhiêu cách chọn một bạn nữ lớp 12A và một bạn nam lớp 12B để dẫn chương trình hoạt động ngoại khóa?
A. 320
B. 630
C. 36
D. 1220
Có bao nhiêu số tự nhiên lẻ có 4 chữ số khác nhau?
A. 2240
B. 2520
C. 2016
D. 256
Một nhóm gồm 11 bạn học sinh trong đó có An, Bình, Cường tham gia một trò chơi đòi hỏi 11 bạn phải xếp thành một vòng tròn. Tính xác suất để ba bạn An, Bình, Cường không bạn nào xếp cạnh nhau
A.
B.
C.
D.
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn ?
A. 25
B. 75
C. 100
D. 15
Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được bao nhiêu số tự nhiên có hai chữ số mà chữ số hàng đơn vị lớn hơn chữ số hàng chục?
A. 48
B. 72
C. 54
D. 36
Từ 6 điểm phân biệt thuộc đường thẳng và một điểm không thuộc đường thẳng ta có thể tạo được tất cả bao nhiêu tam giác?
A. 210
B. 30
C. 15
D. 35
Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3, 4, 5 và chữ số 4 đứng cạnh chữ số 3 và chữ số 5?
A. 1470
. 750
C. 2940
D. 1500
Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M(0;1;0) ,N(100;10) và P(100;0). Gọi S là tập hợp tất cả các điểm A(x;y) với nằm bên trong (kể cả trên cạnh) của OMNP . Lấy ngẫu nhiên một điểm A(x;y). Xác suất để bằng
A.
B.
C.
D.
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình có hai nghiệm phân biệt là ?
A.
B.
C.
D.
Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân
A.
B.
C.
D.
Có bao nhiêu số có bốn chữ số đôi một khác nhau và chia hết cho 5 được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6?
B. 220A. 360
B. 220
C. 240
D. 180
Một viên phấn bảng có dạng một khối trụ với bán kính đáy bằng 0,5cm, chiều dài 6cm. Người ta làm một hình hộp chữ nhật bằng carton đựng các viên phấn đó với kích thước 6cm x 5cm x 6cm. Hỏi cần ít nhất bao nhiêu hộp kích thước như trên để xếp 460 viên phấn?
A. 17
B. 15
C. 16
D. 18
Có 10 chiếc bút, 15 cái thước, 5 cái tẩy, các đồ vật này phân biệt. Chọn 1 đồ vật trong số các đồ vật trên. Hỏi có bao nhiêu cách chọn?
A. 30
B. 10!.15!.5!
C. 30!
D. 25!
Ba người cùng đi săn A, B, C độc lập với nhau cùng nổ súng bắn vào mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của A, B, C tương ứng với 0,7; 0,6; 0,5. Tính xác suất để có ít nhất một xạ thủ bắn trúng?
A. 0,75
B. 0,45
C. 0,94
D. 0,80
Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật
A.
B.
C.
D.
Tính số cách rút ra đồng thời hai con bài từ cỗ bài tú lơ khơ 52 con.
A. 26
B. 2652
C. 1326
D. 104
Trong mặt phẳng tọa độ ở góc phần tư thứ nhất ta lấy 2 điểm phân biệt; cứ thế ở các góc phần tư thứ hai, thứ ba, thứ tư ta lần lượt lấy 3, 4, 5 điểm phân biệt (các điểm không nằm trên các trục tọa độ). Trong 14 điểm đó ta lấy 2 điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt hai trục tọa độ
A.
B.
C.
D.
Một hộp đựng 6 bi trắng và 5 bi xanh. Lấy ngẫu nhiên 4 viên bi từ hộp, hỏi có bao nhiêu cách lấy mà 4 viên bi lấy ra có đủ hai màu ?
A. 300
B. 310
C. 320
D. 330
Trên mặt phẳng ta xét một hình chữ nhật ABCD với các điểm A(-2;0), B(-2;2), C(4;2), D(4;0) (hình vẽ). Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên (tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm M(x;y) mà x + y < 2
A.
B.
C.
D.