12 CÂU HỎI
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là
2x - y + 1 = 0 và x + y -4 = 0. Phương trình đường thẳng AD là
Cho tứ diện đều ABCD cạnh bằng 1. Xét các điểm M và N thay đổi lần lượt thuộc các cạnh AD, BC sao cho AM = CN = x(0< x < 1) Gọi (P) là mặt phẳng chứa MN và song song với CD. Thiết diện của tứ diện với mặt phẳng (P) có diện tích nhỏ nhất bằng
A.
Cho tứ diện đều ABCD cạnh bằng 1. Xét các điểm M và N thay đổi lần lượt thuộc các cạnh AD, BC sao cho AM = CN = x(0< x < 1) Gọi (P) là mặt phẳng chứa MN và song song với CD. Thiết diện của tứ diện với mặt phẳng (P) có diện tích nhỏ nhất bằng
A.
Trong không gian, cho hình chữ nhật ABCD có AB = 2, AD = 3. Đường thẳng d nằm trong mặt phẳng (ABCD), không có điểm chung với ABCD, song song với cạnh AB và cách AB một khoảng bằng 1. Tính thể tích V của khối tròn xoay, nhận được khi quay hình chữ nhật ABCD quanh trục d.
A. V = 17
B. V = 5
C. V = 15
D. 30
Trong không gian cho hình thang cân ABCD có AB//CD, AB = a,CD = 2a,AD = a Gọi M, N lần lượt là trung điểm của AB và CD. Gọi K là khối tròn xoay được tạo ra khi xoay hình thang ABCD quanh trục MN. Tính thể tích V của khối K.
Trong mặt phẳng (P) cho đường tròn (C) có đường kính AB = 2. Trên đường thẳng vuông góc với (P) tại điểm A, lấy điểm S sao cho SA = Xét điểm M thay đổi trên (C), mặt phẳng qua A vuông góc với SB, lần lượt cắt SB, SM tại H và K. Diện tích tam giác AHK đạt giá trị lớn nhất bằng
A. B. 2 C. D. 1
B. 2
D. 1
Cho hình chóp S.ABCD có SA vuông góc với đáy và đáy ABCD là hình chữ nhật. Biết AB =4a,AD=3a,B=5a. Tính khoảng cách từ điểm C đến mp (SBD)
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a , góc ABC = 60 0 , SA = và SA(ABCD). Tính góc giữa SA và mặt phẳng (SBD)
A. 600
B. 900
C. 300
D. 450
Cho hình chóp S . ABCD có đáy ABCD là hình thang cân, đáy lớn AB. Biết rằngAD = DC = CB = a , AB = 2a , cạnh bên SA vuông góc với đáy và mặt phẳng (SBD) tạo với đáy góc 45o. Gọi I là trung điểm của cạnh AB. Tính khoảng cách d từ I đến mặt phẳng (SBD).
Cho hình chóp S.ABCD , mặt đáy ABCD là hình vuông có cạnh bằng a, phẳng (ABCD) và SA = a . Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
B. d = a
Cho hình lập phương ABCD.A'B'C'D' Góc giữa hai mặt phẳng (A'B'CD) và (ABC'D') bằng
A.
B.
C.
D.
Khối hộp có diện tích đáy bằng S, độ dài cạnh bên bằng d và cạnh bên tạo với mặt đáy góc có thể tích bằng