40 CÂU HỎI
Thể tích của khối chóp có chiều cao bằng h và diện tích đáy bằng B là
A. D.
B.
C. V=Bh.
D.
Cho hình nón có diện tích xung quanh bằng và bán kính đáy bằng a. Độ dài đường sinh của hình nón đã cho bằng
A.
B. 3a
C. 2a
D.
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và AC’ là
A.
B.
A.
A.
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SD (tham khảo hình vẽ bên). Tang của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng
A.
B.
C.
D.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA=OB=OC. Gọi M là trung điểm của BC (tham khảo hình vẽ bên). Góc giữa hai đường thẳng M và AB bằng
A.
B.
C.
D.
Cho tứ diện đều ABCD có cạnh bằng 4. Tính diện tích xung quanh của hình trụ có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD.
Cho hai hình vuông ABCD và ABEF có cạnh bằng 1, lần lượt nằm trên hai mặt phẳng vuông góc với nhau. Gọi S là điểm đối xứng với B qua đường thẳng DE. Thể tích của khối đa diện ABCDSEF bằng
A.
B.
C.
D.
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có và AA’=2. Gọi M,N,P lần lượt là trung điểm của các cạnh A’B’, A’C’ và BC. Côsin của góc tạo bởi hai mặt phẳng (AB’C’) và (MNP) bằng
A.
B.
C.
D.
Hình chóp S.ABCD đáy hình vuông cạnh a; Khoảng cách từ B đến mặt phẳng (SCD) bằng
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với độ dài đường chéo bằng 2a, cạnh SA có độ dài bằng 2a và vuông góc với mặt đáy. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.
A.
B.
C.
D.
Cho hình chóp S.ABC với các mặt (SAB), (SBC), (SAC) vuông góc với nhau từng đôi một. Tính thể tích khối chóp S.ABC, biết diện tích các tam giác SAB, SBC, SAC lần lượt là và
A.
B.
C.
D.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. Biết và khoảng cách từ A đến mặt phẳng (SBC) bằng Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC
A.
B.
C.
D.
Cho lăng trụ có đáy ABCD là hình chữ nhật với AB=a, AD= Hình chiếu vuông góc của lên ( ABCD) trung với giao điểm của AC và BD. Tính khoảng cách từ điểm B1 đến mặt phẳng ()
A.
B.
C.
D.
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB và B’C’. Mặt phẳng (A'MN) cắt cạnh BC tại P. Thể tích của khối đa diện MBP.A'B'N bằng
A.
B.
C.
D.
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, AA' = 2a Tính khoảng cách từ điểm A đến mặt phẳng (A'BC)
A.
B.
C.
D.
Cho tam giác ABC cân tại A, có cạnh Gọi M là trung điểm của BC. Khi tam giác quay quanh trục MA ta được một hình nón và khối nón tạo bởi hình nón đó có thể tích là
Một khối trụ có đường kính mặt đáy bằng 2a, chiều cao bằng 3a, thể tích của khối trị đó là
A.
B.
C.
D.
Cho lăng trụ đứng ABC.A’B’C’ có A'B=2a đáy (ABC) có diện tích bằng ; góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng . Thể tích của khối lăng trụ ABC.A’B’C’ bằng
A.
B.
C.
D.
Cho hình chóp S.ABC có đáy ABC vuông tại A, Tam giác SBC đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp S.ABC.
A.
B.
C.
D.
Khối hộp chữ nhật có 3 cạnh xuất phát từ một đỉnh lần lượt có độ dài a, b, c. Thể tích khối hộp chữ nhật là ?
A.
B. abc.
C.
D.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD. Tính bán kính R của khối cầu ngoại tiếp hình chóp S.CMN
Cho khối hộp chữ nhật ABCD.A’B’C’D’ có thể tích bằng 2018 (đvtt). Biết M, N, P là các điểm lần lượt thuộc các đoạn thẳng AA’, DD’, CC’ sao cho A'M = MA DN=ND', CP’ = 2PC’. Mặt phẳng (MNP) chia khối hộp đã cho thành hai khối đa diện. Thể tích khối đa diện nhỏ hơn bằng
A.
B.
C.
D.
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, biết A'A=A'B=A'C=4a. Hình chóp A’.ABC có tất cả bao nhiêu mặt phẳng đối xứng?
A. 3.
B. Không có.
C. 4.
D. 2.
Hình đa diện đều có tất cả các mặt là ngũ giác có tất cả bao nhiêu cạnh ?
A. 30.
B. 12.
C. 20.
D. 60.
Cho tam giác đều ABC cạnh a quay xung quanh đường cao AH tạo nên một hình nón. Tính diện tích xung quanh của hính nón đó.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A cạnh huyền bằng 2a và SA=2a vuông góc với đáy. Tính thể tích V của khối chóp đã cho.
Lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng , cạnh AB=a Thể tích khối đa diện ABCC'B' bằng
A.
Cắt một khối trụ T bằng một mặt phẳng đi qua trục của nó ta được một hình vuông có diện tích bằng 9. Khẳng định nào sau đây là sai?
Cho lục giá đều ABCDEF có cạnh bằng 4. Cho lục giác đều đó quanh quay đường thẳng AD. Tính thể tích V của khối tròn xoay được sinh ra.
A.
B.
C.
D.
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi M' , N', P', Q lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng (ABCD) Tính tỉ số để thể tích khối đa diện MNPQ.M'N'P'Q' đạt giá trị lớn nhất.
A.
B.
C.
D.
Hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=a, AC=2a. Mặt bên (SAB), (SCA) lần lượt là các tam giác vuông tại B, C. Biết thể tích khối chóp S.ABC bằng Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là
Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD) Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện ABMN. Tính
Cho hình nón chứa bốn mặt cầu cùng có bán kính là r, trong đó ba mặt tiếp xúc với đáy, tiếp xúc lẫn nhau và tiếp xúc với mặt xung quanh của hình nón. Mặt cầu thứ tư tiếp xúc với ba mặt cầu kia và tiếp xúc với mặt xung quanh của hình nón. Tính chiều cao của hình nón.
Cho hình chóp S.ABC có đáy là ABC vuông tại A và có cạnh AC vuông góc với mặt phẳng nào sau đây ?
A. (SBC)
B. (ABC)
C. (SBC)
D. (SAB)
Cho hình chóp S.ABC có hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Tam giác ABC đều, I là trung điểm của BC. Góc giữa hai mặt phẳng (SAI) và (SBC) là
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là vuông cạnh 2a, mặt bên SAB là tam giác cân nằm trong mặt phẳng vuông góc với đáy, Tính bán kính mặt cầu (S) ngoại tiếp hình chóp.
A.
B.
C.
D. Kết quả khác
Cho hình lăng trụ đều ABC.A’B’C có AB=2a, AA'=3a Gọi M, N, P lần lượt là trung điểm của AA’, A’C, AC. Tính theo a thể tích V của khối tứ diện B.MNP.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi là thể tích khối chóp S.AMPN. Giá trị lớn nhất của thuộc khoảng nào sau đây?
A.
B.
C.
D.
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh, a góc giữa mặt bên và mặt phẳng đáy là α thoả mãn Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỉ lệ thể tích hai khối đa diện là gần nhất với giá trị nào trong các giá trị sau
A. 0,11.
B. 0,13.
C. 0,7.
D. 0,9.
Hình đa diện trong hình vẽ bên có bao nhiêu mặt?
A. 10
B. 15
C. 8
D. 11