25 CÂU HỎI
#2H3Y1-2~Trong không gian với hệ tọa độ số Oxyz cho các điểm A(1; 2; 3), B(2; 1; 5), C(2; 4; 2). Góc giữa hai đường thẳng AB và AC bằng:
A. 600
B. 300
C. 1200
D. 1500
Trong không gian với hệ tọa độ Oxyz cho là
Trong không gian Oxyz, cho đường thẳng d:. Đường thẳng d đi qua điểm nào sau đây:
A. K(1;-1;1)
B. F(0;1;2)
C. E(1;1;2)
D. H(1;2;0).
Trong không gian Oxyz, cho mặt cầu (S) có phương trình x² + y² + z² - 2x + 4y - 6z + 9 =0. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;3), R=√5
B. I(1;-2;3), R=√5
C. I(1;-2;3), R=5
D. I(-1;2;-3), R=5.
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm K(0;2;2√2) và tiếp xúc với mặt phẳng (Oxy) là:
A. x2+(y-2)2+(z-2√2)2=4
B. x2+(y-2)2+(z-2√2)2=8
C. x2+(y-2)2+(z-2√2)2=2√2
D. x2+(y-2)2+(z-2√2)2=2.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : x² + y² + z² - 2x + 4z + 1= 0. Tâm của mặt cầu là điểm:
A. I(1;-2;0)
B. I(1;0;-2)
C. I(-1;2;0)
D. I(0;1;2).
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
#2H3Y1-3~Trong không gian Oxyz, phương trình mặt cầu (S) đường kính AB với A(4; -3; 5), B(2; 1; 3) là:
A. x² + y² + z² + 6x + 2y - 8z - 26 = 0
B. x² + y² + z² - 6x + 2y - 8z + 20 = 0
C. x² + y² + z² + 6x - 2y + 8z - 20 = 0
D. x² + y² + z² - 6x + 2y - 8z + 26 = 0.
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz. Tìm tâm I và tính bán kính R của mặt cầu (S): x²+y²+z²-2x-4y+2z+2=0.
A. I(-1;-2;1),R=2
B. I(1;2;-1),R=2√2
C. I(-1;-2;1),R=2√2
D. I(1;2;-1),R=2.
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-5)² + (y-1)² + (z+2)²=9. Tính bán kính R của mặt cầu (S).
A. R=18
B. R=9
C. R=3
D. R=6.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x²+y²+z²+2x-4y+6z-2=0. Tìm tọa độ tâm I và tính bán kính R của (S).
A. Tâm I(-1;2;-3) và bán kính R=4
B. Tâm I(1;-2;3) và bán kính R=4
C. Tâm I(-1;2;3) và bán kính R=4
D. Tâm I(1;-2;3) và bán kính R=16.
#2H3Y1-3~Trong không gian tọa độ Oxyz, xác định phương trình mặt cầu có tâm I(3;-1;2) và tiếp xúc mặt phẳng (P): x+2y-2z=0.
A. (x-3)²+(y+1)²+(z-2)2=2
B. (x-3)²+(y+1)²+(z-2)²=1
C. (x+3)²+(y-1)²+(z+2)2=1
D. (x+3)²+(y-1)²+(z+2)²=4.
#2H3Y1-3~Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+(y+2)²+z²=25. Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(1;-2;0), R=5
B. I(-1;2;0), R=25
C. I(1;-2;0), R=25
D. I(-1;2;0), R=5.
Trong không gian Oxyz, phương trình mặt cầu tâm I(2;1;-3) bán kính R=4 là:
A. (x+2)²+(y+1)²+(z-3)²=16
B. (x+2)²+(y+1)²+(z-3)²=4
C. (x-2)²+(y-1)²+(z+3)²=4
D. (x-2)²+(y-1)²+(z+3)²=16.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình là x²+y²+z²-2x-4y-6z+5=0. Tính diện tích mặt cầu (S).
A. 42π
B. 36π
C. 9π
D. 12π.
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình (x+1)²+(y-3)²+z²=16. Tìm tọa độ tâm I và bán kính R của mặt cầu đó.
A. I(-1;3;0), R=4
B. I(1;-3;0), R=4
C. I(-1;3;0), R=16
D. I(1;-3;0), R=16.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S ): ( x-5 )²+( y-1 )²+( z+2 )²=16. Tính bán kính của (S).
A. 4
B. 16
C. 7
D. 5.
Trong không gian Oxyz, cho mặt cầu (S) có phương trình x²+y²+z²-2x-4y-6z-11=0. Toạ độ tâm T của (S) là:
A. T(1;2;3)
B. T(2;4;6)
C. T(-2;-4;-6)
D. T(-1;-2;-3)
Trong không gian Oxyz, mặt cầu tâm I(1;2;3) đi qua điểm A(1;1;2) có phương trình là:
A. (x-1)²+(y-1)²+(z-2)²=2
B. (x-1)²+(y-2)²+(z-3)²=2
C. (x-1)²+(y-2)²+(z-3)²=√2
D. (x-1)²+(y-1)²+(z-2)²=√2.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(1;0;-2) và mặt phẳng (P) có phương trình x + 2y -2z +4 =0. Phương trình mặt cầu (S) tâm I và tiếp xúc với mặt phẳng (P) là:
A. (x-1)² + y² + (z+2)² =9
B. (x-1)² +y² + (z+2)² =3
C. (x+1)² + y² + (z-2)² =3
D. (x+1)² + y² + (z-2)² =9.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x²+y²+z²-x+2y+1=0. Tìm tọa độ tâm I và bán kính R của (S).
A. I(-1/2;1;0) và R = 1/4
B. I(1/2;1;0) và R = 1/2
C. I(1/2;-1;0) và R = 1/2
D. I(-1/2;1;0) và R = 1/2
Trong không gian Oxyz, cho mặt cầu (S): x²+y²+z²-2x+6y-6=0. Bán kính của (S) bằng:
A. √46
B. 16
C. 2
D. 4.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y-2z+3=0. Tính khoảng cách d từ điểm M(2;1;0) đến mặt phẳng (P).
A. d = 1/3
B. d = √3/3
C. d = 3
D. d = 1
#2H3Y2-1~Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;3;2), B(2;-1;5) và C(3;2;-1). Gọi #$\overrightarrow{AB}$,$\overrightarrow{AC}$~ là tích có hướng của hai véc-tơ
. Tìm tọa độ véc-tơ
.
A. = (15;9;7)
B. = (9;3;-9).
C. = (3;-9;9)}
D. = (9;7;15)}
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P:3x-4y+5z-2=0. Véc-tơ nào dưới đây là một véc-tơ pháp tuyến của mặt phẳng P?
A. =(3;-5;-2)
B. =(-4;5;-2)
C. =(3;-4;5)
D. =(3;-4;2).