vietjack.com

200 câu trắc nghiệm Phương pháp tọa độ trong không gian nâng cao (P2)
Quiz

200 câu trắc nghiệm Phương pháp tọa độ trong không gian nâng cao (P2)

V
VietJack
ToánLớp 126 lượt thi
25 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz, cho hai điểm M(0;1;3), N(10;6;0) và mặt phẳng (P): x - 2y + 2z -10 = 0. Điểm I(-10; a; b) thuộc mặt phẳng (P) sao cho |IM - IN| lớn nhất. Khi đó tổng T = a + b bằng:

T = 5

T = 1

T = 2

T = 6

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian tọa độ Oxyz, cho mặt cầu (S): xy2 + z2 - 2x + 4y - 4z -16 = 0 và mặt phẳng (P): x + 2y - 2z - 2 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính là:

r =6

r = 22

r = 4

r = 23

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian tọa độ Oxyz cho mặt cầu (S): xy+ z+ 4x - 6y + m = 0 và đường thẳng Δ là giao tuyến của hai mặt phẳng (α): x + 2y - 2z - 4 = 0 và (β): 2x - 2y - z + 1 = 0. Đường thẳng Δ cắt mặt cầu (S) tại hai điểm phân biệt A, B thỏa mãn AB = 8 khi:

m = 12

m = -12

m = -10

m = 5

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông cân tại A, cạnh BC = a√6. Góc giữa mặt phẳng (AB'C) và mặt phẳng (BCC'B') bằng 600. Tính thể tích V của khối lăng trụ ABC.A'B'C'?

 V=2a333

 V=a332

 V=3a334

 V=3a332

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục Oxyz, cho mặt cầu (S) có tâm I (0; -2; 1) và mặt phẳng (P): x + 2y - 2z + 3 = 0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có diện tích là 2π. Viết phương trình mặt cầu (S).

( S ) : x2+(y+1)2+(z+1)2=3

(S) : x2+(y+2)2+(z+1)2=1

(S) : x2+(y+2)2+(z-1)2=3

(S) : x2+(y+2)2+(z+1)2=2

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz, cho điểm M (1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C thỏa mãn OA = 2OB. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.

64/27

10/3

9/2

81/16

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz cho hai mặt cầu: 

(S1):x2+y2+z2+4x+2y+z=0;

(S2); x2+y2+z2-2x-y-z=0

cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

4 Mặt cầu.

2 Mặt cầu.

3 Mặt cầu.

1 Mặt cầu.

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz cho điểm A (2;1;2) và mặt cầu (S): xy+ z- 2y - 2z - 7 = 0. Mặt phẳng (P) đi qua A và cắt (S) theo thiết diện là đường tròn (C) có diện tích nhỏ nhất. Bán kính đường tròn (C) là:

1

5

3

2

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz cho A (1; 2; -3), B (3/2; 3/2; -1/2), C (1; 1; 4), D (5; 3; 0). Gọi (S1là mặt cầu tâm A bán kính bằng 3(S2) là mặt cầu tâm B bán kính bằng 3/2. Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu (S1)(S2) đồng thời song song với đường thẳng đi qua 2 điểm C, D.

1

2

4

Vô số.

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (2; -3; 7), B (0; 4; -3) và C (4; 2; 5). Biết điểm Mx0;y0;z0 nằm trên (Oxy) sao cho MA+MB+MC có giá trị nhỏ nhất. Khi đó tổng P=x0+y0+z0 bằng:

P = 0

P = 6

P = 3

P = -3

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz cho các mặt phẳng (P): x - y + 2z + 1= 0, (Q): 2x + y + z - 1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa yêu cầu.

r=3

r=32

r=2

r=322

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu S:x2+y2+z2-2x+6y-4z-2=0,mặt phẳng(α):x+4y+z-11=0.Gọi (P) là mặt phẳng vuông góc với α, (P) song song với giá của véctơ  v=1;6;2 và (P) tiếp xúc với (S). Lập phương trình mặt phẳng (P)

2x - y + 2z - 2 = 0 và x - 2y + z - 21 = 0.

x - 2y + 2z + 3 = 0 và x - 2y + z - 21 = 0.

2x - y + 2z + 3 = 0 và 2x - y + 2z - 21 = 0.

2x - y + 2z + 5 = 0 và 2x - y + 2z - 2 = 0.

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x-12+(y-2)2+z-32=16 và các điểm A (1; 0; 2), B (-1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của (P) với mặt cầu (S) có diện tích nhỏ nhất.Khi viết phương trình (P) dưới dạng (P): ax + by + cz + 3 = 0. Tính T = a + b + c

3

-3

0

-2

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho tứ diện OABC (O là gốc tọa độ), A ∈ Ox, B ∈ Oy, C ∈ Oz và mặt phẳng (ABC) có phương trình: 6x + 3y + 2z - 12 = 0. Thể tích khối tứ diện OABC bằng:

14

3

1

8

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1; 0; 0), B (0; 0; 2) và mặt cầu S:x2+y2+z2-2x-2y+1=0 . Số mặt phẳng chứa hai điểm A, B và tiếp xúc với mặt cầu (S) là:

1 mặt phẳng

2 mặt phẳng

3 mặt phẳng

Vô số mặt phẳng.

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz cho điểm M (3; 2; 1). Viết phương trình mặt phẳng đi qua M và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC.

3x + y + 2z - 14 = 0

3x + 2y + z - 14 = 0

 x9+y3+z6=1

 x12+y4+z4=1

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz cho A (3;2;1), B (-2;3;6). Điểm M (xM; yM; zM) thay đổi thuộc mặt phẳng (Oxy). Tìm giá trị của biểu thức T = x+ y+ zM khi MA+3MB  nhỏ nhất.

-7/2

7/2

2

-2

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ Oxyz cho 3 điểm A (1; 1; 1), B (0; 1; 2), C (-2; 1; 4) và mặt phẳng (P): x - y + z + 2 = 0. Tìm điểm N ∈ (P) sao cho S = 2NANBNC2 đạt giá trị nhỏ nhất.

 N-43;2;43

N (-2; 0; 1)

 N-12;54;34

N (-1; 2; 1)

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian Oxyz cho ba điểm A (1; 2; 3), B (3; 4; 4), C (2; 6; 6) và I (a; b; c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính a + b + c.

63/5

31/3

46/5

10

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho các điểm A (2; 0; 0); B (0; 3; 0); C (0; 0 ;4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH.

 x=4ty=3tz=-2t

 x=3ty=4tz=2t

 x=6ty=4tz=3t

 x=4ty=3tz=2t

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Cho a, b, c, d, e, f là các số thực thỏa mãn 

(d-1)2+e-22+f-32=1a+32+b-22+c2=9

Gọi giá trị lớn nhất, giá trị nhỏ nhất của biểu thức F=a-d2+b-e2+c-f2  lần lượt là M, m

Khi đó, M - m bằng:

10

10

8

22

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (-1; 2; 4) và B (0; 1; 5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

 d=-33

 d=3

 d=13

 d=13

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ trục tọa độ , cho bốn đường thẳng:

d1:x-31=y+1-2=z+11; d2:x1=y-2=z-11

d3:x-12=y+11=z-11; d4:x1=y-1-1=z-1

Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:

0

2

Vô số.

1

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho M (3; 4; 5) và mặt phẳng (P): x - y + 2z - 3 = 0. Hình chiếu vuông góc của M lên mặt phẳng (P) là:

H (2; 5; 3)

H (2; -3; 1)

H (6; 7; 3)

H (1; 5; 2)

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - 2y + z -1 = 0 và điểm A (0; -2; 3), B (2; 0; 1). Điểm M (a; b; c) thuộc (P) sao cho MA + MB nhỏ nhất.

Giá trị của abc2 bằng:

41/4

9/4

7/4

3

Xem đáp án
© All rights reserved VietJack